[Tensorflow]实战google深度学习框架之tf.x函数记录

博客是学习tensorflow时的各种tf.x函数的笔记。

1. tf.reduce_sum函数:

reduce_sum ( 
    input_tensor , 
    axis = None , 
    keep_dims = False , 
    name = None , 
    reduction_indices = None
 )

此函数计算一个张量的各个维度上元素的总和。相当于np.sum

input_tensor 输入张量

axis 在哪个维度求和

2.tf.gather函数

tf.gather:用一个一维的索引数组,将张量中对应索引的向量提取出来

import tensorflow as tf
embedding = tf.Variable([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]])
tok_seq1 = tf.Variable([0,2,1])
tok_seq = tf.Variable([[0,2],[1,3]])
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(tf.gather(embedding, tok_seq1)))
    print(sess.run(tf.gather(embedding,tok_seq)))
输出
[[ 1  2  3  4  5]
 [11 12 13 14 15]
 [ 6  7  8  9 10]]
[[[ 1  2  3  4  5]
  [11 12 13 14 15]]

 [[ 6  7  8  9 10]
  [16 17 18 19 20]]]

 3.tf.expand_dims和tf.squeeze函数

 tf.expand_dims(input, axis=None, name=None, dim=None)

在第axis位置增加一个维度

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

tf.squeeze(input, squeeze_dims=None, name=None)

给定张量输入,此操作返回相同类型的张量,并删除所有尺寸为1的尺寸。 如果不想删除所有尺寸1尺寸,可以通过指定squeeze_dims来删除特定尺寸1尺寸。
如果不想删除所有大小是1的维度,可以通过squeeze_dims指定。

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]
Or, to remove specific size 1 dimensions:
 
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值