博客是学习tensorflow时的各种tf.x函数的笔记。
1. tf.reduce_sum函数:
reduce_sum (
input_tensor ,
axis = None ,
keep_dims = False ,
name = None ,
reduction_indices = None
)
此函数计算一个张量的各个维度上元素的总和。相当于np.sum
input_tensor 输入张量
axis 在哪个维度求和
2.tf.gather函数
tf.gather:用一个一维的索引数组,将张量中对应索引的向量提取出来
import tensorflow as tf
embedding = tf.Variable([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]])
tok_seq1 = tf.Variable([0,2,1])
tok_seq = tf.Variable([[0,2],[1,3]])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(tf.gather(embedding, tok_seq1)))
print(sess.run(tf.gather(embedding,tok_seq)))
输出
[[ 1 2 3 4 5]
[11 12 13 14 15]
[ 6 7 8 9 10]]
[[[ 1 2 3 4 5]
[11 12 13 14 15]]
[[ 6 7 8 9 10]
[16 17 18 19 20]]]
3.tf.expand_dims和tf.squeeze函数
tf.expand_dims(input, axis=None, name=None, dim=None)
在第axis位置增加一个维度
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
tf.squeeze(input, squeeze_dims=None, name=None)
给定张量输入,此操作返回相同类型的张量,并删除所有尺寸为1的尺寸。 如果不想删除所有尺寸1尺寸,可以通过指定squeeze_dims来删除特定尺寸1尺寸。
如果不想删除所有大小是1的维度,可以通过squeeze_dims指定。
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]
Or, to remove specific size 1 dimensions:
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]