机器学习-KNN算法

#KNN
k-NN算法采用测量不同特征值之间的距离方法进行分类
优点:简单直观、精度高、对异常值不敏感
缺点: 计算复杂、空间复杂度高

使用python进行数据分类的步骤:
1、使用python导入数据
2、从文本文件中解析数据
3、测试分类器

分类器代码:

def classify0(inX, dataSet, labels, k):   #分类器代码
	dataSetSize = dataSet.shape[0]   #numpy函数shape[0]返回dataSet的行数
	diffMat = tile(inX, (dataSetSize,1)) - dataSet #在列向量方向重复inX共一次(横向),行向量方向重复inX共dataSetSize次(纵向)
	sqDiffMat = diffMat**2  #二维特征相减后平方
	sqDistances = sqDiffMat.sum(axis=1)  #sum()元素相加,sum(0)列相加,sum(1)行相加
	distances = sqDistances**0.5  #开平方
	sortedDistIndicies = distances.argsort()  #返回distances中元素从小到大的索引值classCount={}  #记录类别此数的字典
	for i in range(k):  #排序循环
		VoteIlabel = labels[sortedDistIndicies[i]]
		classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
	sortedClassCount = sorted(classCount.iteritems(), 
	key=operator.itemgetter(1), reverse=Ture)
	return sortedClassCount[0][0]  #返回次数最多的类别

距离度量方式:
1、欧拉距离
2、曼哈顿距离
3、切比夫距离

分类器使用详细代码:

kNN.pyfrom numpy import * #模块导入(科学计算包NumPy)
import operator  #模块导入(运算符) 

def createDataSet():
	group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) 
	labels=[‘A’, ‘A’, ‘B’, ‘B’]
	return group, labels
def file2matrix(filename):  #读取文件数据fr = open(filename)
	arrayOLines = fr.readlines()
	numberOfLines = len(arrayOLines)
	returnMat = zeros((numberOfLines,3))
	classLabelVector = []
	Index = 0
	for line in arrayOLines
		line = line.strip() #截取回车字符
		listFromLine = line.split(‘\t’)  #分割数据为元素列表
		returnMat[index,:]=listFromLine[0:3]
		classLabelVector.append(int(listFromLine[-1]))
		index += 1 
return returnMat,classLabelVector
def autoNorm(dataSet):  #归一化特征值(平衡各类数据权重)
	minVals = dataSet.min(0)
	maxVals = dataSet.max(0)
	ranges = maxVals - minVals
	normDataSet = zeros(shape(dataSet))
	m = dataSet.shape[0]
	normDataSet = dataSet - tile(minVals, (m,1))
	normDataSet = nermDataSet/tile(ranges,(m,1))r
	return normDataSet, ranges, minVals
def datingClassTest():  #分类器测试代码,计算错误率
	hoRatio = 0.10
	datingDataMat,datingLables = file2matrix(‘datingTestSet.txt’)
	normMat,ranges, minVals = autoNorm(datingDataMat)
	m = normMat.shape[0]
	numTestVecs = int(m*hoRatio)
	errorCount = 0.0 
	for i in range(numTestVecs):
		classifierResult=classify0(normMat[i,:],mornMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
		Print “the classifier came back with : %d, the real answer is : %d” % (classifierResult, datingLabels[i])
		If(classifierResult != datingLabels[i]): errorCount += 1.0
		Print “the total errror rate is : %f” % (errorCount/float(numTestVecs))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值