【Leetcode】3. Longest Substring Without Repeating Characters

Given a string, find the length of the longest substring without repeating characters.

Examples:

Given "abcabcbb", the answer is "abc", which the length is 3.

Given "bbbbb", the answer is "b", with the length of 1.

Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring"pwke" is a subsequence and not a substring.


思路:给定的string s, 那我们要找的longest substring without repeating characters可以用两个index i, j 来记录,即s.substring(i, j), substring中出现的character在boolean[256]数组中标记为true。我们使j不断往右挪动直到given string的末尾,在这过程中,当chars[j]没有出现在substring中时,加进当前的substring,当chars[j]出现在substring中时,我从substring的左边删除chracter 直到删掉当前chars[j]这个character,这时substring中便没有chars[j]这个元素,此时我们再将chars[j]加进substring,j继续往右移动,直到末尾。注意,当最长子串出现在s的末尾部分时,这时j == s.length()无法进入while循环来更新长度len,所以最后return时需要再更新一次以确保len是维持最长子串的长度。代码解法一是我自己写的(64ms, 38.16%),解法二是别人的代码(47ms, 92.67%),两个思路一样,但解法二在实现上有更多的优化。


代码如下:

解法一:

第一次提交wrong answer, 第二次提交才AC

public int lengthOfLongestSubstring(String s) {
        if (s == null || s.length() == 0){
            return 0;
        }
        int i = 0, j = 0;
        int len = 0;
        Set<Character> set = new HashSet<>();
        while (j < s.length()){
            if (!set.contains(s.charAt(j))){
                set.add(s.charAt(j));
                j++;
            } else {
                len = Math.max(len, j - i);
                while (s.charAt(i) != s.charAt(j)){
                    set.remove(s.charAt(i));
                    i++;
                }
                set.remove(s.charAt(i));
                i++;
            }
        }
        return Math.max(len, j - i);
    }

解法二:

public int lengthOfLongestSubstring(String s) {
        int i = 0, j = 0;
        int len = 0;
        char[] chars = s.toCharArray();
        
        boolean[] shown = new boolean[256];
        
        while (j < s.length()){
            shown[chars[j]] = true;
            j++;
            len = Math.max(len, j - i);
            
            while (j < s.length() && shown[chars[j]]){
                shown[chars[i]] = false;
                i++;
            }
        }
        return Math.max(len, j - i);
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值