Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example:
Input: "babad" Output: "bab" Note: "aba" is also a valid answer.
Example:
Input: "cbbd" Output: "bb"
解法一:
回文字符串是正向读和反着读都是一样的字符串,比如abcba, a. 题目要求找长度最长的回文子字符串。 我们可以以某一个字符为中心点,向两边延伸,若字符左右相等则继续延伸,这样找到的回文子字符串长度为奇数。也可以以某两个相邻相等的字符为中心点,向两边延伸,这样找到的回文子字符串长度为偶数。如果一个字符有一个相邻相等的字符,例如C'C''C'''中的C'',则以C''延伸得到最长回文子串是CCC,以C''C'''延伸得到的最长回文子串是C''C''',所以对于每一个字符,都要以两种情况来延伸得到最长的回文子串,而且start, maxlen得到的值是最长的那个情况下的。我们需要一个start, maxlen变量来记录和更新每一次延伸的结果。时间复杂度 O(n^2)
代码如下:
int start = 0, maxLen = 0;
public String longestPalindrome(String s) {
if (s == null || s.length() < 2){
return s;
}
char[] ss = s.toCharArray();
for (int i = 0; i < ss.length - 1; i++){
extend(ss, i, i + 1);
extend(ss, i, i);
}
return s.substring(start, start + maxLen);
}
private void extend(char[] ss, int left, int right){
while (left >= 0 && right < ss.length && ss[left] == ss[right]){
left--;
right++;
}
if (maxLen < right - left - 1){
maxLen = right - left - 1;
start = left + 1;
}
}
解法二:
我们可以用动态规划来解题。dp[i][j] 表示给定字符串s中 从 i 到 j (包括i, j所指的字符) 所形成的字符串是否是回文字符串,则dp[i][j] == true if dp[i + 1][j - 1] == true and ss[i] == ss[j],注意index的边界情况。我们依旧需要start, maxLen来记录和更新每一次的值。 时间复杂度 O(n^2)
代码如下:
public String longestPalindrome(String s) {
if (s == null || s.length() < 2){
return s;
}
char[] ss = s.toCharArray();
boolean[][] dp = new boolean[ss.length][ss.length];
int start = 0, maxLen = 1;
for (int i = ss.length - 1; i >= 0; i--){
for (int j = ss.length - 1; j >= i; j--){
dp[i][j] = ss[i] == ss[j] && (j - i < 2 || dp[i + 1][j - 1]);
if (dp[i][j] && j - i + 1 > maxLen){
start = i;
maxLen = j - i + 1;
}
}
}
return s.substring(start, start + maxLen);
}
解法三:
可以在解法二的基础上继续优化,从O(n^2)优化至O(n). dp[i][j] 是从dp[i + 1][j - 1] 得来的,外部循环i是在逐步递减的,也就是说在当前(i) 开始的时候,dp[0...j...n-1]还是上一次(i + 1)的值。并且j也是逐步递减,我们先更新dp[j],再更新dp[j - 1],因此在更新dp[j]的时候,dp[j - 1]还是上一层的值。如果用一位数组来记录的话,可以减少memory。
代码如下:
public String longestPalindrome(String s) {
if (s == null || s.length() < 2){
return s;
}
char[] ss = s.toCharArray();
boolean[] dp = new boolean[ss.length];
int start = 0, maxLen = 1;
for (int i = ss.length - 1; i >= 0; i--){
for (int j = ss.length - 1; j >= i; j--){
dp[j] = ss[i] == ss[j] && (j - i < 2 || dp[j - 1]);
if (dp[j] && j - i + 1 > maxLen){
start = i;
maxLen = j - i + 1;
}
}
}
return s.substring(start, start + maxLen);
以上三种解法思路均来源于LeetCode discussion。