达芬奇机器人变身‘模仿达人’,通过看视频模仿手术缝合、穿针、打结等动作...

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

模仿是最原始的学习方法,也是实现人工智能的基石。

通过深度学习和算法,机器人也可以通过看视频学会各种各样的技能。

先看个图:

是不是觉得有点眼熟。

没错,它就是技艺高超,被大家所熟知的达芬奇机器人。

这次它又被赋予了新功能:通过观看教学视频,学会外科手术中的相关任务。比如缝合,穿针,以及打结等动作。

让达芬奇机器人变成‘模仿艺人’的关键,是一个叫做Motion2Vec的半监督式学习算法,近日由谷歌大脑,英特尔公司和加利福尼亚大学伯克利分校合作开发。

起初,加州大学伯克利分校的教授曾使用YouTube视频作为机器人学习各种动作(例如跳跃或跳舞)的指南。机器人模仿视频中的动作,成功学习了20多种杂技,比如侧空翻、单手翻、后空翻等高难度动作。

谷歌此前也有过相关研究,例如使用视频来教授四足机器人学习狗狗的灵活动作。

这些经历促成了他们彼此的合作,他们将这些知识应用于最新项目Motion2Vec中,在这个过程中,使用了实际手术过程的视频进行指导和训练。

在最近发布的论文中,研究人员概述了他们如何使用YouTube视频训练两臂的达芬奇机器人在织布机上插入针头并进行缝合。

人类在看视频的时候可以迅速理解内容,但机器人目前无法做到这一点,它们只是将其视为像素流。因此,要以机器人的方式让他们理解并学习——弄清并分析这些像素,然后将视频分割成有意义的序列。

事实上,Motion2Vec算法的开发主要基于暹罗网络和递归神经网络。

暹罗网络(Siamesenetwork)就是“连体的神经网络”,神经网络的“连体”是通过共享权值来实现的。它的主要功能是衡量两个物体的相似度。比如,看看某两个人长得像不像。

这样,研究人员就可以将视频中相同动作段的图像放到一起,并给它们做一个标记,比如‘针头插入’,或‘瞄准位置’等,从而对视频中的图像进行分割和分类。

然后,研究人员使用递归神经网络来找到那些没有被标记的图像,这些图像会反馈到暹罗网络中以改善动作片段的比对。

对于缝合任务,研究团队仅需要78个教学医学视频即可训练其AI引擎执行该过程,成功率为85%。

这似乎意味着机器人可以在外科手术中承担一些更基本,重复性的任务,但它们目前还无法完全代替医生来做手术。

加州大学伯克利分校实验室的负责人KenGoldberg解释说“我们想要看到的是,机器人在做基本缝合任务,而外科医生能够监视手术过程,比如像机器人表明他们想要在哪一排进行缝合,或传达出希望进行六次覆膜缝合的想法。” “这样,机器人能代替外科医生做最基本的任务,让医生们得到更多的休息,并能够专注于手术中更复杂或更细微的部分。”

论文直通车

论文题目:

Motion2Vec:Semi-Supervised Representation Learning from Surgical Videos

论文链接:

http://www.ajaytanwani.com/docs/Tanwani_Motion2Vec_arxiv_2020.pdf

项目来源:

https://sites.google.com/view/motion2vec

END

推荐阅读:

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近1000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
内容概要:本文介绍了《车联网(智能网联汽车)产业发展行动计划(2025-2030年)》的内容,涵盖发展背景、现状、目标、重点任务及保障措施。全球智能网联汽车成为汽车产业变革的核心方向,中国通过“车路云一体化”试点等初步形成全产业链生态优势。面对技术瓶颈、标准缺失、商业模式不清等挑战,中国设定了到2030年建成全球领先智能网联汽车产业体系的目标,包括L3级自动驾驶规模化商用、智能网联汽车新增产值突破1万亿元等阶段性目标。重点任务涉及技术突破(如AI、通信、芯片等)、基础设施建设(如智能化道路、云控平台等)、标准与法规完善、示范应用与商业化、产业协同与生态构建。保障措施包括政策支持、人才培育、安全保障和宣传推广。最终目标是实现经济效益、社会效益和战略意义,推动中国从“跟跑”向“领跑”跨越。; 适合人群:对智能网联汽车行业感兴趣的各界人士,包括政府决策者、企业管理人员、科研人员、投资者等。; 使用场景及目标:①帮助政府决策者了解智能网联汽车的发展方向和政策措施;②为企业管理人员提供行业趋势和发展机会的参考;③为科研人员明确研究重点和技术突破方向;④为投资者提供投资领域的指导。; 其他说明:本文详细阐述了智能网联汽车产业的发展规划,强调技术创新、生态协同和安全可控,旨在推动中国智能网联汽车产业的全面发展,为全球汽车产业变革贡献中国方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值