在计算机领域的科研中,最初的创新点从何而来?

作者丨战斗系牧师@知乎(已授权)

来源丨https://zhuanlan.zhihu.com/p/524323387

编辑丨极市平台

卷首语

这次不太涉及过多的技术分享,简单聊聊~

创新性,英文又叫novelty。是无数水手最害怕的三个字!

创新性或者没有创新性

其实创新性这种东西看似很虚,很飘渺,但是实际上就是就是很虚很飘渺。六老师说过:一千个人眼里就有一千个novelty,但是我希望一千个人眼里只有我这一个西游记。评审以及我们读者凭啥去判断这篇文章有没有创新性,有无一个明确的指标吗?很显然并没有,很多时候靠的就是阅文无数积累下来的经验。所以对于越是经验老道的reviewer来说,想要达到他心中的novelty就越难。举个例子,比如我身边一些朋友,很喜欢跨学科带东西,比如拿Transformer去求解流体力学的模型,这是novelty吗?假如你是一个只有流体力学背景的审稿人,这玩意你压根没见过,这不是创新性吗?但是假如你是一个有着Transformer的研究经历的审稿人,这玩意在你眼里看上去,就和换皮、套壳没啥区别,这篇文章在你这的novelty就会大打折扣。所以对于如何把握住所谓的novelty我想说的就是文章投对地方,找对审稿人很重要。也希望呼吁一下审稿人,别再一言不合就直接写上没有novelty,多多耐心细致的解释一下为啥觉得不好原因,多说说对文章发展有指导性的意见,对自己审稿的文章负点责任。

新手为啥会常常发现人家的东西很好,可是自己做不出来的怪圈呢?

其实很多时候我看着看着文章会有着一种错觉,所谓的很具有创新性的文章其实咋一看似乎也很普通。这时候我就会在心里反问自己一句:"如果是我能不能做出来这个东西”。我想我是会的,前提是我已经知道前人工作的问题点在哪,或者是自己所做的方法的问题点在哪?我觉得很多时候论文新手必须要纠正的一点是创新点不是凭空产生的,一定是立足于问题之上的。创新点的提出,目的是为了解决问题的。问题与创新点很多时候是一个母子关系,如果你的问题是空洞的,无意义的,那么你的方法自然是空洞的,无意义的。就好像前期的新手(包括我)很多时候会把实验结果是否SOTA看作首要任务,每次跑出来,结果差了,就无缝衔接继续实验。通常为了保证自己能够持续不断的尝试实验,会看很多文章,然后移植很多方法,做很多尝试。记录一版又一版的实验。组会汇报的时候,我能清晰的说出别人的文章做了啥,然后解决了一个怎样的问题。但是对于我自己的实验来说,自己做的实验很多时候自己都不确定这个问题是不是存在。最后我们发现,方法是搬运的;问题也是搬运的(但是不确定是不是存在);实验结果是好了,但是没有好很多的情况,这样的进展谈何创新性啊!只是在一味的生产制造垃圾和浪费电费罢了。所以,我们每个时刻都要清晰的知道我们在解决什么问题,我们在实验前最好就要有个大体的把控,这样我们每次的实验才会有意义,创新性才会顺理成章的出来。

有用、实在是创新性的追求!

我们要冷静客观,不要一味去追求猎奇、新鲜,那其实真不是创新性,有用、实在才是创新性的存在的意义。像之前Swin-Transformer(Swin-T)拿到ICCV马奖的时候,依然有许多质疑novelty的声音,类似于只是将CNN和Transformer融合这样的操作是否是属于能够达到了评选为马奖的创新性等级。大家似乎关注的点在于东西是不是足够新,足够奇,而忽略了本来工作应该要具备的实用性以及是否是能对后续的工作带来启发性。 追求足够的怪诞这不是我们发文的初衷,所以一步步的优化,不断的比前人好,针对自己每次实验的问题提出自己的理解以及改进的方向,并且自己的方法能够work,能够具有前瞻性,就是我认为novelty。方法不在于有多猎奇,我能把我的故事说闭环了,把我自己在文章中吹的牛逼都做到了,那就是成功的创新性了。

多积累,多看文章

好的段子不是一下子就会出来的,一定是经过生活的打磨以及自身的阅历逼出来的。那么好的创新性也同理,是经过不断出现的问题,不断出现的Bug, 打磨出来的。所以真不用太急于一下子就说,为啥我看完一篇文章灵感不会来。有时候灵感来不了很正常,有的文章隔一段时间反复回头看,感受也会不太一样,做科研就要不断的积累才能有成果,而积累的过程需要每个时刻都做好总结,学会这些东西才能有储备用起来。技术池深了,才能经得住风浪。

多实验

很多好的点子是一下子出现,过一段时间就消失的,也有很多点子在A数据集上面不work但是在B数据集就好了,实验是必要的也是必须的。不能纸上谈兵,PPT说得头头是道,但是到了实验,连loss全是NaN都没有办法解决。看文章是为了拓宽视野,但是正常磨练一个idea,打磨一个idea一定是在实验中来的。

卡时间

好的创新性是有时效性的,不是说我打磨4-5年出来的东西就是好的。要记住每一次赶顶会都有可能出现撞idea的风险,我自己就被撞过几次idea,别提多悲伤了,写完文章之后发现,一篇和自己idea相似的文章已经被接收,还在各种公众号被发出来。所以要把握每一次赶会议的时间点,如果Idea真的好久都没有办法出现或者是一直都没有办法work,建议即使止损。可能不是你的idea不行,只是恰好,它不适合出现在这个时间点而已。如果你看到了撞idea的文章,也不要悲伤,这恰好是自己想法棒的一点啊!

结尾

其实我说了这么久的novelty,但是我还是觉得文章的写作是比novelty更重要的点子,文章的写作才是要不断打磨的,novelty这种很多时候可遇不可求,把自己更多精力放在练习文章写作才是新手的主要任务!

本文仅做学术分享,如有侵权,请联系删文。

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

计算机视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

76581d85fc9a85d963c05675b5681405.png

▲长按加微信群或投稿

9b49d4a1cc5136e496b8535bac87b6fe.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列三维点云系列结构光系列手眼标定相机标定激光/视觉SLAM自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

2e6e609c6a330934a9d49ab707f97920.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值