ChatGPT已能操控机器人,工程师连代码都不用写,网友:微软在搞天网?

Alex 发自 凹非寺
量子位 | 公众号 QbitAI

当我还在跟ChatGPT吹牛尬聊时,有人已经在拿它操控机器人了。

不是别人,正是OpenAI的金主爸爸、不久前刚拿ChatGPT“重新发明搜索引擎”的微软

635a6c2a0c415bce5ac5cf299d546790.png

到目前为止,开发者调教机器人不仅技术门槛高,还道阻且长:

工程师需要在工作流程回路中,不断手写新代码和规范来纠正机器人行为;另外,操控不同的机器人可能需要不同的编程语言和环境。

d590ddbccec93362c99b47f0f03adbb8.png

而在ChatGPT的帮助下,工程师甚至不用手写代码——直接用人话描述想做什么,AI就能自动翻译成机器语言。

27536a37702e3d1e3222f692c6a21b88.png

这意味着,一方面专业人士与机器人的交互效率起飞;另一方面,技术门槛也降低一大截,外行人甚至也能参与调试,创造出更多使用方法。

举个简单的例子:让无人机自动检查货架。

首先,操作者只需用自然语言给ChatGPT提出要求;然后,AI就能自动翻译成代码,并指挥无人机行动。(还可以规定无人机的飞行路径。)

b5d4c61cbc5a294da59fb84242b3c538.gif

难怪特斯拉前AI主管Andrej Karpathy会调侃:

最新的热门编程语言是英语。

425af042372b2f4e13d8969bf5ab3174.png

一个AI指挥多种机器人

实际上,ChatGPT会玩儿的花样可多了。

比如,一位操作者跟AI说:“我渴了,请帮我找个喝的。”

此时AI并不会直愣愣地就去找水了,而是会很机灵地反问:

请问你想喝哪种?这里有好几种饮料,比如椰子水、可乐等等。

d1bdc0c06c6b53bb0360424cd4e8bbdd.png

当然操作者也不是吃素的,他并未直接告诉AI选哪个,而是说:“我刚从健身房回来,请帮我找个健康点儿的饮料。”

然后更神奇的操作就开始了:

AI先是猜测他想喝椰子水,然后自己噼里啪啦写出一段代码(甚至还有注释):

3acd88fa98331c7e7046a63a9d5275f6.gif

写完就自己指挥无人机去找椰子水:

365c446707182f3b45eddb35df8f3a24.gif

除了无人机,ChatGPT还能轻松操控别的小机器人,包括摄像头、机械臂等等。

比如让摄像头在房间里找出能加热午饭的东西。

5d5c92efd56fcb96af356246813ad865.gif

还有指挥机械臂拼出一个微软的Logo。(悄悄夹带私货)

2b38d82642f11840bb6b51b365fb010c.gif

看到这些,有网友脑洞大开,有人发问:

他们是不是正在建立无所不能的天网?

ca16dea915c1ccb2d3549f43d97de657.png

还有人甚至调侃称,AI可能连发射核弹的指令都会写:

c31e7f72350372f2d7807e00dfe3f1a9.png

不过话说回来,其实离网友说的这些还差得远,毕竟现在还是需要人类参与的。d5892d0e29b18877a9e393167ad1813c.png

怎么实现的?

从前文可以看出,这只灵活的AI不仅与人交流畅通无阻,而且和机器也能快速沟通。

这主要得益于微软团队专门开发的一系列API高级函数库

34bd95e8d2a320be8a1f1e973ea1abb0.png

他们没有让ChatGPT背后的语言大模型(LLM),生成某固定种类的代码;因为机器人是个多元化领域,这样可能会在不同场景下涉及大量微调。

而在新颖的操作框架下,不同机器人,都有自己对应的特定函数库。

——一个AI,就能适应不同的对象、不同的任务

一方面,这些函数库,能够连接到机器人控制系统中管理底层硬件,以及执行基本运动的代码和功能模块。

另一方面,为了让ChatGPT也能遵循函数库的规则,预定义函数命名就很关键。清晰的函数名,能让各API之间建立良好的功能连接,最终生成高质量的回答。

其中一项要求,就是所有API名称必须描述整体功能行为。例如,detect_object(object_name) 函数可以在内部链接到OpenCV函数或计算机视觉模型。

设计好库和API后,微软给ChatGPT编写了一个文本提示(prompt),描述目标任务,并明确说明函数库中哪些函数可用;另外,这还能规定ChatGPT生成代码用哪种编程语言。

88f25442b0ed6d5e8db99f0bba7d9c4d.png

值得一提的是,AI生成内容效果,和人为提示的质量呈正相关。为此,微软还开发了一个协作开源平台PromptCraft,任何人都能在此分享不同类机器人的Prompt策略。

88c67dbbabb050a6702436057aa994d4.png

到此,幕后部署基本完成,然后用户就能通过“说人话”间接操控机器人了。

如果想要检查AI生成的代码是否有Bug,随时都能在聊天框直接检查,或通过模拟器测试,人类可以用自然语言指导AI进行修正。

另外,还能到等到用户对解决方案满意为止,再在将ChatGPT生成代码部署到机器人上。

最后,如果是你,会想用ChatGPT操控机器人做些什么呢?

论文地址:
https://www.microsoft.com/en-us/research/uploads/prod/2023/02/ChatGPT___Robotics.pdf
参考链接:
[1]https://arstechnica.com/information-technology/2023/02/robots-let-chatgpt-touch-the-real-world-thanks-to-microsoft/
[2]https://www.microsoft.com/en-us/research/group/autonomous-systems-group-robotics/articles/chatgpt-for-robotics/
[3]https://github.com/microsoft/PromptCraft-Robotics#promptcraft-robotics

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

17.机械臂抓取从入门到实战

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

24ba66a0ffcc74cb220dbbb95959c0eb.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

15009cffda86de569cff421c89c7f8e7.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值