来源:3D视觉工坊
中科院杭州医学所(以下简称“医学所”)坐落于浙江省杭州市,是中国科学院与浙江省共同打造的国家级科研院所。医学所面向健康中国战略需求,围绕医学科学前沿问题,建立医学与多学科交叉融合科学体系,聚焦分子医学、智能诊断、生命组学、创新药物和医疗器械等关键领域,开展有组织、体系化的基础研究和与临床实践紧密结合的攻关式研究。医学所与附属医院实行所院融合一体化发展,拥有得天独厚的临床资源和研究条件,并携手杭州医药港小镇国内外1600多家生物医药企业,共同推动研究成果的临床转化和产业化,致力于建成集学科引领、产业孵化、人才培养于一体的世界一流科研机构。
人工智能与智慧医疗中心简介
愿景:创造可信智能,守护生命健康 Vision: Creating trustworthy intelligence, to empower healthy and productive life
人工智能与智慧医疗中心(Center for AI and Intelligent Medicine以下简称“AIM”)是医学所重点建设的研究中心之一,协同智能分子诊断、医学所-华大生命组学、创新药物等中心,以及附属肿瘤医院各个专科内外科、影像病理、检验、药物临床、信息等多个科室,发挥国家肿瘤区域医疗中心的肿瘤大数据和生物样本资源优势、BT+AI人才聚集优势,围绕医疗大数据安全共享和深度挖掘的关键共性问题,立足于生物医药和多组学大数据,聚焦恶性肿瘤等重大疾病的精准诊疗和药物发现,搭建生物医药可信智能开放操作系统和创新合作研究平台,研发基础大模型,开展AI算法及平台、多模态智能诊疗和全链条智能制药等研发,推进前沿人工智能技术与生物医药领域的突破性进展。
AIM现已建成由李晓林教授领衔,核心研究员、博士后及硕博研究生组成的数十人研究团队,科研经费和计算资源充足(GPU集群拥有A1008卡, A408卡, A30*8卡等节点和200G IB交换机;投入数千万元)。现诚邀志存高远、勇于挑战、乐享成就的您加盟,携手创造下一代基础模型,让生命充满AI!
导师简介

李晓林,中科院医学所研究员,人工智能与智慧医疗中心主任兼首席科学家,知识联邦产学研联盟理事长。曾任美国佛罗里达大学终身正教授,计算机工程部主任,牵头创立全美首个国家级深度学习中心并任创始主任(四校联盟: UF, CMU, UO, UMKC, 80多位国际知名教授; 30多家国际知名企业会员)。2010年获得美国国家科学基金杰出青年教授奖NSF CAREER Award,2021年被评为中国人工智能年度十大风云人物、中国隐私计算年度十大人物。主导开发CognitiveEngine,DeepCloud,PrimateAI,DeepFolding,FoldingZero,DeepDrug,DeepBipolar,DeepAtom,DeepEyes,DeepHealth,MySurgeryRisk, iBond, FLEX等多个AI算法和平台,在机器学习、云计算、安全隐私、生物医药等领域的国际顶级期刊和会议发表论文150余篇。研究成果被有效应用于靶点发现、蛋白质结构预测、分子生成、虚拟筛选、疾病风险预测和临床决策系统。
主要研究方向
1.AI算法及平台
探索和应用最前沿的人工智能算法和可信智能平台技术,搭建基础大模型(包括大语言模型LLM、智能助手等),安全合规融合多方分布式大规模生物医疗数据,为智慧医疗构建可信AI基础设施,打造下一代基础模型及智能科学生态。目前重点在于基础大模型、深度学习、强化学习、NLP、CV、KG、搜索、推荐、联邦学习、多方安全计算、隐私计算、大规模深度学习云原生平台和可信AI操作系统。
2.多模态智能诊疗
智能化医疗实践的全生命周期,研发医疗智能决策支持算法及平台。利用深度学习、强化学习、NLP、CV、知识图谱等最新人工智能技术,研究多模态数据融合的共性与核心技术,提升多维度数据重建精度,构建影像、病理、临床信息和生物组学信息(基因、蛋白和单细胞等)的多模态融合分析模型,搭建医疗基础大模型,全面支持医疗智能化,构建智能诊断、蛋白质组学、多模态多组学、癌症智能早筛、液体活检、数字病理、药物临床预后、伴随诊断和智能决策等算法及平台。
3.全链条智能制药利用前沿人工智能技术(特别是深度学习、强化学习、AIGC、基础大模型),开展靶点识别、结构设计、智能生成、高通量结合虚拟筛选、药效和毒性分析、候选病人筛选、预后预测等创新药物发现研究。并结合PK/PD预测及动物实验和临床试验,实现干湿试验智能分析决策和反馈闭环。研发大规模虚拟药物筛选和全流程自反馈闭环智能平台,推进药物发现智能化,助力致死率高、罕见性癌症等高挑战的重大疾病国产创新药的研制。目前重点在于设计小分子药物、功能核酸(核酸适体、核酸疫苗及药物)和蛋白抗体等。
招聘专业
人工智能 (机器学习、深度学习、强化学习、联邦学习、NLP、知识图谱、搜索、CV、Robotics)、计算机科学、软件工程、生物信息学、多组学、蛋白组学、药学、医学、数理统计、电子信息、控制优化、网络安全等相关学科。
招聘岗位
PI(研究员/特聘研究员/副研究员/特聘副研究员/助理研究员)
要求:
遵纪守法,身心健康;
具有国内外知名高校或科研机构科研经历,富有带领团队开展挑战性工作的激情;
能独立开展科研工作,创新意识及团队组织能力强。
待遇:
事业编制;
基础年薪25-60万+科研绩效奖励+社保单位缴纳部分;
安家费20-350万(入职后一次性拨付,买房可免税);
优秀者可通过“钱塘举才”绿色通道另享受钱塘区购房补贴;
精装修人才过渡用房(市场价租金2-5折);
充足的计算资源、实验仪器设备及科研经费,硕博研究生指标;
食堂免费就餐(按月餐补),工会物资福利、三甲医院VIP体检套餐;
按政策享受就医、子女入学入托、配偶工作等待遇。
博士后
1、要求:
遵纪守法,身心健康;
年龄一般不超过35岁,应届博士毕业生或获博士学位不超过3年;
富有创新意识及团队协作精神。
2、待遇:
基础年薪30-40万+科研绩效奖励+社保单位缴纳部分;
充分的计算资源及实验仪器设备;
精装修人才公寓;
食堂免费就餐(按月餐补)、工会物资福利、三甲医院VIP体检套餐等;
按政策享受就医、子女入学入托等待遇。
研究所预留1/3正式科研编制引进年度指标用于遴选优秀博士后出站留所;另,通过杭州医学院等高校及杭州医药港小镇的人才战略合作,可享受博士后出站后优先引进,留杭市属单位工作者可享受不低于40万的人才补贴。
算法工程师/软件工程师
1、要求:
遵纪守法,身心健康;
相关专业硕士及以上学历,有人工智能(ML/ DL/RL/ NLP/CV)、生物医药、隐私计算、云原生、分布式系统、大语言模型、前后端软件开发等研发经验者优先;
工作踏实认真,有责任心,具有良好的沟通协调及团队协作精神。
2、待遇:
提供具有行业竞争力的薪资待遇,具体面议;
按国家有关规定缴纳五险一金;
食堂免费就餐(按月餐补)、工会物资福利、三甲医院VIP体检套餐等;
如科研潜力突出,可申请审核制博士并择优录取。
科研助理(科研)
1、要求:
本科(985)及以上学历;有人工智能(ML/ DL/RL/ NLP/CV)、生物医药、隐私计算、云原生、分布式系统、大语言模型、前后端软件开发等研发经验者优先;
工作踏实认真,有责任心,有良好的沟通、协调以及团队协作精神;
2、待遇:
提供具有行业竞争力的薪资待遇,具体面议;
按国家有关规定缴纳五险一金;
食堂免费就餐(按月餐补)、工会物资福利、三甲医院VIP体检套餐等;
如科研潜力突出,可申请硕士或审核制博士并择优录取。
联系方式:在公众号[3D视觉工坊]的后台回复[医学所],即可获得联系方式。
—END—高效学习3D视觉三部曲
第一步 加入行业交流群,保持技术的先进性
目前工坊已经建立了3D视觉方向多个社群,包括SLAM、工业3D视觉、自动驾驶方向,细分群包括:[工业方向]三维点云、结构光、机械臂、缺陷检测、三维测量、TOF、相机标定、综合群;[SLAM方向]多传感器融合、ORB-SLAM、激光SLAM、机器人导航、RTK|GPS|UWB等传感器交流群、SLAM综合讨论群;[自动驾驶方向]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器讨论群、多传感器标定、自动驾驶综合群等。[三维重建方向]NeRF、colmap、OpenMVS等。除了这些,还有求职、硬件选型、视觉产品落地等交流群。大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

第二步 加入知识星球,问题及时得到解答
针对3D视觉领域的视频课程(三维重建、三维点云、结构光、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业、项目对接为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:「3D视觉从入门到精通」
学习3D视觉核心技术,扫描查看,3天内无条件退款
第三步 系统学习3D视觉,对模块知识体系,深刻理解并运行
如果大家对3D视觉某一个细分方向想系统学习[从理论、代码到实战],推荐3D视觉精品课程学习网址:www.3dcver.com
基础课程:
[1]面向三维视觉算法的C++重要模块精讲:从零基础入门到进阶
工业3D视觉方向课程:
SLAM方向课程:
[1]如何高效学习基于LeGo-LOAM框架的激光SLAM?
[1]彻底剖析激光-视觉-IMU-GPS融合SLAM算法:理论推导、代码讲解和实战
[2](第二期)彻底搞懂基于LOAM框架的3D激光SLAM:源码剖析到算法优化
[3]彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与源码剖析
[4]彻底剖析室内、室外激光SLAM关键算法和实战(cartographer+LOAM+LIO-SAM)
视觉三维重建
[1]彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进)
自动驾驶方向课程:
[1] 深度剖析面向自动驾驶领域的车载传感器空间同步(标定)
[2]面向自动驾驶领域目标检测中的视觉Transformer