做视觉三年,有公司部署工程师月薪给3W多,该不该去?

本文探讨了当前计算机视觉领域竞争激烈,算法岗位需求大但基础薄弱的情况。文章强调了算法部署工程师的重要性,介绍了CUDA和TensorRT在模型部署中的优化作用,以及深蓝学院提供的深度学习加速课程,旨在提升工程师的CUDA开发和TensorRT应用能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近两年,CV越来越卷,算法岗位供大于求。根据面试官的反馈,大多数去面试的小伙伴只能称之为”做过CV“,绝大部分人基础不牢、代码能力弱、或是对技术没有思考、项目经验太水。

因此,本质原因是计算机视觉的入门门槛低得可怕,很多理工专业的同学都跑过深度学习模型。AI行业的高薪及快速发展,使得计算机视觉也正悄然发生着巨变。之前我们总是追求算法能达到多少精确率和召回率,但在实际落地时,却发现速度太慢,压根不能用。这时怎么办呢?算法部署工程师闪亮登场!

算法部署工程师,顾名思义,就是将算法在嵌入式设备端或者服务器端进行推理部署的,会想尽办法对算法进行优化和加速,以满足实时性的需求。部署岗位通常要求的技能点为熟悉CUDA开发与TensorRT部署。

78031b11f17d4f9ca5f98de03541f4da.png

CUDA是NVIDIA推出的运算平台,TensorRT是NVIDIA推出的高性能的深度学习推理(Inference)优化器,是目前应用最广泛的推理框架之一,在超大规模数据中心、嵌入式平台、自动驾驶平台等应用十分广泛。

虽然NVIDIA有官方的TensorRT文档以及案例库,但英文的材料对初学者入门并不友好。为此,深蓝学院与腾讯高级研究员一起研发了深度神经网络加速:cuDNN 与 TensorRT的课程,细致讲解CUDA运算的理论支撑与实践,以及cuDNN、TensorRT这两个当下最热门的深度神经网络加速的工具。

扫码报名,了解详情

0b54b6d25f72c7199243f53dee289412.png

以下附上部分课程预览:

(编译TRT git源码sampleMNIST)


01

强大的师资力量

杨伟光,腾讯高级研究员,大连理工大学硕士

毕业后一直在腾讯从事语音领域深度学习加速上线工作。近10年CUDA开发经验,近5年TensorRT开发经验;

Github TensorRT_Tutorial作者。

康博,高级研究员

主要方向为自然语言处理、智能语音及其在端侧的部署。博士毕业于清华大学,在各类国际AI会议和刊物中发表论文10篇以上,多次获得NIST主办的国际比赛top 2成绩。近年来主要研究方向为AI在场景中的落地应用。

02

详尽的课程大纲

388aec2083a79431b1e36521be189e51.jpeg

03

我们的课程优势

1. 内容精简:主讲CUDA核心的并行运算操作

2知识前沿:本期课程涵盖当下主流的深度学习模型加速工具

3. 氛围活跃:与数百位同学共同交流学习

04

本课程适合人群

1.  人工智能领域的算法或者开发工程师,尤其是工作涉及深度学习的模型。

2.  希望学习并行计算系统的科研工作者以及工程师。

05

本期课程学习收获

1. 掌握CUDA并行系统的分析、开发、调试与优化方法。

2. 熟悉CUDA的基本概念以及主流的并行运算。

3. 了解cuDNN与TensorRT两个深度学习模型的加速工具

4. 具备动手实践深度学习模型加速的能力

06

咨询详情

扫码报名,了解详情

19c591c7895a283b6f702595fd8cf083.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值