来源:科研大匠
12 月 13 日,著名科学期刊《Nature》刚刚发布了 2023 年度十大人物(Nature’s 10),旨在评选出为科学领域做出重要贡献并引起人们对关键问题关注的个人。
Nature’s 10 链接:
https://www.nature.com/immersive/d41586-023-03919-1/index.htm
与以往不同的是,今年的 Nature’s 10 包含了大型语言模型(LLM)ChatGPT,这是有史以来第一次「计算机程序」入选。《Nature》表示这一做法旨在认可模仿人类语言的人工智能系统在科学发展和进步中所发挥的作用。
在过去的一年里,ChatGPT 在很多方面对科学产生了深远而广泛的影响。Nature 总结了 ChatGPT 这一年给科学领域做出的贡献。
首先,ChatGPT 与人类共同撰写了一些科学论文 —— 有时是暗中进行且不具名的。其中,ChatGPT 负责起草演示文稿、项目大纲,编写计算机代码,激发研究灵感。
ChatGPT 本身是按照其训练数据的风格合理地生成对话响应。但在这样做的过程中,它和其他生成式人工智能 (AI) 程序正在改变科学家的工作方式。
ChatGPT 是 OpenAI 在 2022 年 11 月 30 日发布的,今年 OpenAI 又升级了其底层 LLM,并将其与其他程序连接起来,以便接收和创建图像,并可以使用数学和编码软件来提供帮助。这些改进让 ChatGPT 逐渐成为科研人员的得力助手。
然而,生成式 AI 技术也有其危险的一面。例如,它们可以帮助作弊者和抄袭者,如果不加以控制,可能会不可逆转地污染科学知识的源泉。一些研究人员已经承认使用 ChatGPT 生成文章但未声明。并且,ChatGPT 也会编造一些参考资料,编造事实并生成一些含有偏见的内容。
大型语言模型的规模和复杂性意味着它们本质上是「黑匣子」,但当 AI 的代码和训练数据不公开时,理解它们的行为就变得非常困难了,就像我们面对 ChatGPT 时遇见的情况一样。开源 LLM 的运动正在不断发展,但到目前为止,这些模型的能力不如大型专有项目。
此外,ChatGPT 等生成式 AI 还重新引发了关于人工智能的局限性、人类智能的本质以及如何最好地调节两者之间相互作用的讨论。
总的来说,ChatGPT 入选 Nature’s 10「实至名归」。
目前我们还无法得知从类似 ChatGPT 的系统中还能激发出多大潜力。它们的能力可能仍受到算力或训练数据的限制。但显而易见的是,生成式 AI 的革命已经开始,而且这场浪潮已经不可阻挡。
ChatGPT之父与ChatGPT共同入选
尽管机器被首次推上了年度科学人物的位置,但《自然》杂志的 Nature’s 10 名单中还包括了它的创造者之一Ilya Sutskever 。
Ilya Sutskever 是 OpenAI 的首席科学家兼联合创始人,也是生成式人工智能最前沿的思想家之一。他将这家获得微软大力资助的公司视为开发通用人工智能(AGI)的机会。近几年来,他一直致力于创建一种方法来指导和控制比人类更聪明的人工智能系统。
Sutskever 是一直认同基于深度学习的 AI 潜力的学者,他很早就跟从自己的导师 Geoffrey Hinton 开始开发 AI 系统,并向世人展示了 AI 的潜力。因为 AI 高智能程度的风险,一个月前,OpenAI 经历了激烈的管理层斗争。作为 OpenAI 董事会成员,Ilya Sutskever 因对奥特曼失去信心而支持罢免首席执行官萨姆・奥特曼(Sam Altman)。但仅三天后,他在推特上表示对这个决定感到遗憾。
其他入选者
今年入选《自然》年度十大人物的还有:
大阪大学教授林克彦(Katsuhiko Hayashi):他在今年 3 月使用两只雄性小鼠的细胞培育出了小鼠后代。
纽约洛克菲勒大学研究员 Svetlana Mojsov:她的实验表明治疗糖尿病而开发 GLP-1 类似物可以用于治疗肥胖。
布基纳法索 Nanoro 临床研究中心主任 Halidou Tinto:他在临床试验方面的工作,向世界卫生组织推荐了 R21 疟疾疫苗。
印度空间研究组织(ISRO)科学家 Kalpana Kalahasti:成功执行了月船 3 号任务。
巴西环境部长 Marina Silva:帮助保护了亚马逊热带雨林。
美国能源部国家点火装置(NIF)物理学家 Annie Kritcher:帮助实现了核聚变实验有史以来的第一次能量增益。
联合国首席气候变暖官员(United Nations chief heat officer)Eleni Myrivili:提高了全球对极端高温的认识。
佛罗里达大学盖恩斯维尔分校物理学家 James Hamlin:发现了备受争议的物理学家 Ranga Dias 的高温超导工作存在问题。
伦敦圣巴多罗买医院研究员 Thomas Powles:他在治疗膀胱癌方面取得的突破性成功,可能预示着下一波强大的免疫治疗药物出现。
参考内容:
https://www.nature.com/immersive/d41586-023-03919-1/index.html
https://www.nature.com/articles/d41586-023-03930-6
https://english.elpais.com/science-tech/2023-12-13/for-the-first-time-the-journal-nature-has-chosen-a-non-human-being-chatgpt-as-one-of-its-scientists-of-the-year.html
版权声明
本文来源:Nature/机器之心等,版权属于原作者,仅用于学术分享
下载1
在公众号「3D视觉工坊」后台,回复「3d001」,即可获取工业3D视觉(结构光、缺陷检测、三维点云)、SLAM(视觉/激光SLAM)、自动驾驶、三维重建、事件相机、无人机等近千余篇最新顶会论文。
下载2
在公众号「3D视觉工坊」后台,回复「3d002」,即可获取巴塞罗那自治大学3D视觉课件、慕尼黑工业大学3D视觉和视觉导航精品课件。
下载3
在公众号「3D视觉工坊」后台,回复「3d003」,即可获取相机标定、结构光、三维重建、激光-视觉-IMU-GPS多模态融合SLAM、LOAM、ORB-SLAM3,深度估计、模型部署、3D目标检测等学习课件。注:非完整版。
高效学习3D视觉三部曲
第一步 加入行业交流群,保持技术的先进性
目前工坊已经建立了3D视觉方向多个社群,包括SLAM
、工业3D视觉
、自动驾驶
、三维重建
、无人机
方向,细分群包括:
[工业3D视觉]
相机标定、立体匹配、三维点云、结构光(面/线/散斑)、机械臂抓取(2D/3D)、2D缺陷检测、3D缺陷检测、6D位姿估计、相位偏折术、Halcon、光场重建、摄影测量、阵列相机、偏振三维测量、光度立体视觉、激光雷达、综合群等。
[SLAM]
视觉SLAM、激光SLAM、ORB-SLAM、Vins-Fusion、LOAM/LeGo-LOAM、cartographer、VIO、语义SLAM、滤波算法、多传感器融合、多传感器标定、MSCKF、动态SLAM、MOT SLAM、NeRF SLAM、FAST-LIO、LVI-SAM、LIO-SAM、事件相机/GPS/RTK/UWB/IMU/码盘/TOF(iToF/dToF)/激光雷达/气压计/毫米波雷达/RGB-D相机/超声波等、机器人导航、综合群等。
[自动驾驶]
深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪、综合群等。
[三维重建]
NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
[无人机]
四旋翼建模、无人机飞控等
除了这些,还有求职、硬件选型、视觉产品落地、最新论文、3D视觉最新产品、3D视觉行业新闻等交流群
大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

第二步 3D视觉从入门到精通系统课程
目前3D视觉工坊平台针对各个方向的知识点,打造了多门从理论到实战课程,包括:
论文写作课程
:三维科研基础入门课程
:C++、Linux、相机标定、ROS2、dToF工业3D视觉课程
:面结构光、线结构光、散斑结构光、相位偏折术、机械臂抓取、三维点云(PCL和Open3D)、缺陷检测SLAM课程
:LeGo-LOAM、LOAM、LVI-SAM(激光-视觉-IMU-GPS融合SLAM)、Vins-Fusion、ORB-SLAM3、室内/室外激光SLAM等机器人路径规划与控制课程
:机器人规控入门与实践三维重建课程
:comlap、MVSNet等自动驾驶课程
:多传感器标定、视觉Transformer、单目深度估计、3D目标检测、模型部署等。
注:工坊现面向平台所有读者招募主讲老师,奖励丰厚,具体详情可以可以参考:3D视觉主讲老师招募

第三步 加入知识星球,问题及时得到解答
「3D视觉从入门到精通」知识星球,依托于微信公众号「3D视觉工坊」、「计算机视觉工坊」、「3DCV」平台,星球内除了包含3D视觉独家秘制视频课程(近20门,包括三维重建
、三维点云
、手眼标定
、相机标定
、3D目标检测
、深度估计
、ORB-SLAM3
、Vins-Fusion
、激光-视觉-IMU-GPS融合
、机械臂抓取
等)、3D视觉项目对接
、3D视觉学习路线
、最新论文&代码分享
、入门书籍推荐
、源码汇总
、最新行业模组分享
、编程基础&作业
、求职招聘&面经&面试题
等,更有各类大厂的算法工程人员进行技术指导。目前星球铁杆粉丝已近6000+,让我们一起探索更其妙的3D视觉技术、为祖国的创新发展贡献自己的一份力。知识星球入口:3D视觉从入门到精通
