点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达
扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
明敏 衡宇 发自 凹非寺
量子位 | 公众号 QbitAI
就离谱,都2024了,人工智能靠人工的戏码还在上演。
而且是类似ATM机背后坐真·柜员给你递钱的那种!
当你走进一家超市,挑选完商品,无需人工、自助结账,直接拿好东西走人,等待一段时间,AI就能基于视频识别出你选了哪些东西,然后把账单发送过来,你只需点击付款。
听着是不是很方便?
“拿1000个印度人换来的”。
在摄像头背后,有一个规模达千人的印度团队,需要通过肉眼远程查看顾客拿了什么商品。
好家伙,新的等式出现了:
AI=Anonymous Indians(姓名不详的印度人)???
这就是最近被曝光的亚马逊无人超市“黑科技”。
它本来号称使用AI技术,即拿即走、无需扫码、事后扣款,完全自动化。适用于亚马逊生鲜连锁商店,从2020年开始在美国洛杉矶、芝加哥以及英国等地区推广使用。
结果使用4年,真实面目是人类给AI打工。
△截取自公众号“英国那些事儿”文章评论区
“非常依赖人类的CV”
亚马逊这个引发大吐槽的服务,叫做“Just walk out”。
它主打的就是节省顾客逛超市时等候结账的时间。在2016年推出,号称是完全由计算机视觉技术驱动,通过超市内的监控摄像头和传感器来追踪人们离店时拿走的商品。
过去几年里,44家亚马逊生鲜商店中,有27家支持了这一服务,还有一些有机食品连锁店也支持。
不过当时这种模式就有一些小问题,顾客往往在离店几小时后才能接收到账单,因为人工要重新审核视频,确保账单正确。
据The Information数据,直到2022年,每1000个“Just walk out”服务中,还有700个需要人工审核。
这远远没有达到亚马逊内部本来的目标,1000个case中仅有50个需要审核。
亚马逊当然不承认该业务其实是靠人工来运转,他们给出的解释是:
机器学习的过程里,人工标注是必需的。当然如果AI实在无法判断的时候,人工也有参与“一小部分”。
至于具体比例,就很值得玩味了。
不过,为啥这个伪人工智能会被揪出来呢?
还得从亚马逊最近的大裁员说起。
亚马逊刚刚公布的一波大裁员包括线下门店技术团队,几百个岗位被裁掉。消息称,身份识别和结账团队部分业务受到影响。
这个以奇怪方式运行起来的“Just walk out”,也要walk不动了。之后只保留英国的部分门店和亚马逊便利店。
未来他们打算押注到“Dash Carts”服务上。给线下商店的购物车里嵌入扫描仪,识别顾客购买的商品,然后自助结账。
相对来说,这种模式不用在超市内部装一大堆摄像头,成本和技术难度都降低了,准确性也能有所提高。
不只亚马逊一家
实际上,搞这样骚操作的,远不止亚马逊一家。
2017年,研究咨询公司Gartner就发布了一份关于新型技术炒作周期的报告。
报告显示,许多AI技术,如DL和ML,当时都处于炒作高峰期。
人们和市场对其的高度追捧,让许多软件供应商开始追逐热潮,把AI技术纳入自家的产品战略。
然鹅,报告中明确显示,这些公司中的大多数实际上挂羊头卖狗狗,它们产品中对AI的应用以及所用AI的能力,往往夸大其词。
这种现象在当年被Gartne称为“AI洗白”。
事件曝光后,这种现象并没有得到遏制:
2019年,尽调公司West Monroe Partners对40家美国公司的营销材料进行了检查。
检查结果显示,这40家公司在其营销声明中对AI和ML的能力进行了夸大,平均夸大程度超过30%。
同年,伦敦风险投资公司MMC研究了2830家被归类为AI公司的欧洲初创企业。
MMC发现在这些公司中,真正符合AI公司描述的仅有1580家。
具体有哪些公司干过这些事儿呢?
比如,Facebook(现Meta)。
2015年8月,Facebook推出了名为M的文本型虚拟AI助理;2018年年初,该项目被关停。
当时,M助理号称脚踢Siri,拳打搜索引擎。
回溯那时的用户反馈发现,M助理很像今天火爆的ChatBot,但其相应速度,比《疯狂动物城》里的树懒闪电还要慢。
《连线》杂志文章中写道,一位用户让M助理推荐加州的知名景点,结果M花了15分钟才推荐出 22 个结果——有这时间,早能把Google搜索结果看上十页八页了。
但是这不是M助理的致命bug。
消息人士后来曝光,称该项目运营的2年多里,Facebook一直使用人工在背后操作其所谓的AI系统。
这骚操作和亚马逊无人超市如出一辙,怪不得反应这么慢……
还有一家叫x.ai的初创公司(不是马一龙现在的那家大模型公司哈),曾推广自己在用“AI个人助手”来安排会议。
但其实是由人类员工来完成安排会议的工作。
2021年,x.ai因为难以实现算法独立运作,最终关门大吉。
为啥都干不下去?
发现没有,如上几家虽然“诈骗场景”不同,但原因基本一致:过分夸大AI能力,落地存疑、赚钱更存疑。
以亚马逊的“Just walk out”为例,有人就分析了这种模式注定不可行,“就是个营销噱头”。
即使有大量传感器,也还是会漏掉顾客拿的物品。而且传感器还不是唯一的成本,人工标注也很贵。只要有新产品上货架,就需要几张带注释的图片来重新校准传感器。只要厂家重新设计产品,原本数据集的准确性就会降低。
数据集、技术成本、研究成本、机器操作成本等,导致开销非常大。即便是大模型对其帮助也不大,可能会稍微降低标注成本,但是计算成本又增加了。
据公开信息,每家亚马逊无人商店配备的扫描仪和摄像机系统非常昂贵。
据亚马逊内部人员所说,每个门店可能都要投入上千万美元。
其次,Just walk out对技术的要求也不低。
在去年9月,亚马逊官方发布的介绍中提到,为了弄清商店顾客谁拿了金枪鱼三明治,谁拿了鸡肉沙拉,并算出正确费用,背后技术大有来头:
Just Walk Out 是计算机视觉、目标识别、高级传感器、深度机器学习模型和生成式AI的结合。
每一项都是最前沿的计算机技术。
再者说,超市里光线晦暗,而非货架密布,AI很难精准判别顾客拿走了哪一份商品。
识别效果不稳定,数据需求总是在变,所以“识别顾客买了啥”这个问题会变得很复杂。
当然有网友质疑亚马逊每家无人超市都采用“ATM藏人”策略的真实性。
有人甚至算了一笔账:
哪怕是雇佣了1000名印度员工,三班倒来盯着无人超市的顾客到底买了些什么,这点人力还是远不足以支撑所有超市的运作的。
得出结论,Just walk out可能不是完全AI,但也绝不是完全人工远程操作结账。
有网友嘲讽拉满:
好事儿呀!这证明AI并不会真的让人们失业(狗头)。
甚至对比一下,这样做还不如换回人类员工,效果又稳定、成本还没这么高。
One More Thing
当然,创新永无止境,一种更加抽象的结账模式出现了。
菲律宾收银员通过Zoom接入,跨过半个地球来到纽约为您结算。
据说是一家名叫“快乐收银员”的公司搞出来的,没有网站,在纽约的5个亚洲快餐店里推行。
参考链接:
[1]https://gizmodo.com/amazon-reportedly-ditches-just-walk-out-grocery-stores-1851381116
[2]https://twitter.com/themaxburns/status/1775215997898698907
[3]https://www.mturk.com/
[4]https://arstechnica.com/information-technology/2017/11/expensify-acknowledges-potential-privacy-problem-by-calling-it-a-feature/
3D视觉工坊交流群
目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、大模型、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:
2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等
大模型:NLP、CV、ASR、生成对抗大模型、强化学习大模型、对话大模型等
工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。
SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。
自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。
三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
无人机:四旋翼建模、无人机飞控等
除了这些,还有求职、硬件选型、视觉产品落地、最新论文、3D视觉最新产品、3D视觉行业新闻等交流群
添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。
3D视觉工坊知识星球
3D视觉从入门到精通知识星球、国内成立最早、6000+成员交流学习。包括:星球视频课程近20门(价值超6000)、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。
3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、三维视觉C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪,无人机等。
3D视觉相关硬件
图片 | 说明 | 名称 |
---|---|---|
硬件+源码+视频教程 | 精迅V1(科研级))单目/双目3D结构光扫描仪 | |
硬件+源码+视频教程 | 深迅V13D线结构光三维扫描仪 | |
硬件+源码+视频教程 | 御风250无人机(基于PX4) | |
配套标定源码 | 高精度标定板(玻璃or大理石) | |
添加小助理:cv3d007或者QYong2014 咨询更多 |
— 完 —
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~