DeepSense-V2V:车对车多模态传感、定位和通信数据集

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:3D视觉工坊

添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群

扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

5f5c36768af98c0fe1f5f8cba70fa25b.jpeg

0. 这篇文章干了啥?

车对车(V2V)通信在智能交通系统(ITS)中变得越来越重要,因为它使得车辆能够交换关键信息,从而增强安全性、交通效率和整体驾驶体验。然而,随着交换数据量和复杂性的增加,当前的V2V通信方法面临挑战,这可能限制了ITS的有效性。V2V通信中对更高数据速率的需求促使人们探索毫米波(mmWave)和亚太赫兹(sub-THz)等更高频段。毫米波/亚太赫兹频段提供更大的带宽,非常适合支持V2V通信系统的高速和数据密集型要求。此外,毫米波/亚太赫兹V2V通信系统中大型天线阵列和波束成形能力的可用性使得通信更加稳健和高效,缓解了动态和拥挤环境中干扰和信号衰减的影响。在V2V系统中采用先进的无线通信技术,即使在高速场景下,也能促进车辆之间可靠的数据交换,其中快速准确的信息传播对于避免碰撞、协同驾驶和其他车辆应用至关重要。

此外,未来的无线系统,特别是在6G及以后,预计将把通信、多模态传感和定位能力作为核心组件。这些系统预计将实现共存的通信和传感功能,或者利用其中一种功能来增强另一种功能,从而凸显了多模态传感与通信之间协同作用的重要性。这种协同作用已经推动了关键的研究方向,如多模态传感辅助通信和集成传感与通信。此外,随着自动驾驶汽车的兴起,人们越来越关注为车辆配备多种传感器,如雷达、激光雷达和摄像头,使车辆能够收集全面的环境感知信息。将通信和传感功能集成在一起可能是实现可靠且有效的车对车(V2V)通信的关键。多模态传感能力有助于在复杂和动态的道路场景中有效导航。对环境的详细感知可以增强V2V通信的可靠性,促进先进的决策算法,并在复杂和动态的环境中提高整体安全性和效率。尽管有这些好处,但实现高效的V2V通信仍然面临挑战,特别是在处理毫米波/亚太赫兹频率通信时。

实现高效的毫米波车对车通信得益于(i)先进的检测和跟踪算法的开发和(ii)解决毫米波/亚太赫兹通信系统带来的独特挑战。首先,先进的检测和跟踪算法的开发可以支持毫米波系统中的定向波束成形和阻挡检测/跟踪。其次,利用毫米波/亚太赫兹频率带来了挑战。例如,使用大型天线阵列调整这些通信系统中的窄波束通常与大量训练开销相关,这些开销随着天线数量的增加而增加,使得支持如车对车通信这样的高移动性应用变得具有挑战性。此外,如建筑物和其他车辆等视线(LOS)链路阻挡可能会中断通信并挑战链路可靠性。尽管最近已经发布了几个针对自动驾驶汽车的多模态数据集,但缺乏专为车对车通信设计的大规模数据集。为了应对这些挑战,创建全面的多模态传感辅助车对车通信数据集至关重要,这些数据集可以捕获现实世界场景,使研究人员能够针对这一特定上下文设计和评估算法和协议。

为了满足V2V通信研究对高质量数据集的需求,我们发布了DeepSense 6G V2V数据集,这是世界上第一个大规模的真实世界多模态感知和通信数据集,旨在促进V2V通信研究和算法开发。

本文详细介绍了DeepSense 6G V2V数据集,包括其采集方法、数据格式、可用场景和标注。此外,我们还提供了示例用例,并强调了该数据集在V2V通信研究和算法开发中的潜在应用。

下面一起来阅读一下这项工作~

1. 论文信息

标题:DeepSense-V2V: A Vehicle-to-Vehicle Multi-Modal Sensing, Localization, and Communications Dataset

作者:Joao Morais, Gouranga Charan, Nikhil Srinivas, Ahmed Alkhateeb

机构:亚利桑那州立大学

原文链接:https://arxiv.org/abs/2406.17908

数据集链接:https://deepsense6g.net/

2. 摘要

对于未来的智能交通系统来说,高数据速率和低延迟的车对车(V2V)通信至关重要,它能够实现车辆间的协调、增强安全性,并支持分布式计算和智能需求。然而,开发有效的通信策略需要现实的测试场景和数据集。在高频段,虽然可用频谱更多,但获取这些带宽面临定向传输和信号传播对障碍物的敏感性等挑战。本文首次提出了一个用于研究毫米波车对车通信的大规模多模态数据集。该数据集包含了一个双车测试平台,该平台融合了360度摄像头、四个雷达、四个60 GHz相控阵、一个3D激光雷达和两个精确GPS的数据。数据集包含了在城际和乡村环境中白天和夜间行驶了120公里的车辆数据,速度高达每小时100公里。在所有图像中检测到了超过一百万个物体,包括卡车到自行车等各种类型。此外,本文还提供了详细的数据集统计信息,证明了各种情况的覆盖范围,并强调了该数据集如何能够支持新的机器学习应用。

3. 效果展示

近年来,公开可用的数据集在推动自动驾驶汽车技术发展方面发挥了重要作用。表I总结了其中一些关键数据集。这些数据集通常包含来自各种传感器的数据,如摄像头、LiDAR和GPS/IMU。它们通常用于诸如目标检测和分割、场景理解以及定位和映射等任务。KITTI数据集包含超过22个场景,被广泛用于测试使用LiDAR和摄像头数据的视觉任务机器学习算法,如目标检测。它提供了2D和3D标注数据,并包含约80k个2D和3D边界框。H3D数据集包含160个拥挤场景,共计27k帧,其中对象在完整的360度视图中被标注。KAIST多光谱数据集[30]是一个多模态数据集,包括RGB和热成像摄像头、RGB立体摄像头、3D LiDAR和GPS/IMU,提供夜间数据。然而,其规模有限。NuScenes数据集包含140万个图像和40万个点云,这些数据是从包括六个摄像头、一个LiDAR和五个雷达在内的传感器套件中收集的。它提供3D边界框标注,其感知系统主要依赖LiDAR而非摄像头。Waymo数据集是最大且最多样化的多模态自动驾驶数据集之一,包含从1150个场景中捕获的1200万个3D边界框和990万个2D边界框,这些场景使用5个高分辨率摄像头和5个高质量LiDAR捕获。其检测和跟踪主要依赖LiDAR而非摄像头,但摄像头的视野(FoV)小于270º。

c6ca0c5bcf560e7f09e305a37654de03.png

4. 主要贡献

DeepSense 6G V2V数据集具有以下特点:

(i) 规模庞大,包含超过125k个数据点;

(ii) 基于真实世界的测量数据。该数据集包含共存且同步的多模态感知和通信数据,并按从各种驾驶条件和环境中捕获的4个场景进行组织。这些场景涵盖了城市、郊区和乡村公路设置,包含了不同的交通密度、道路和天气条件。

DeepSense V2V数据集提供了几个关键特性,这些特性对于推动V2V通信研究至关重要:

• 共存的感知和通信:DeepSense V2V数据集包含大规模的V2V毫米波通信数据集合,这些数据与多模态感知信息相结合。这种独特的组合使研究人员能够深入了解V2V场景,使他们能够探索传感器模态和通信系统之间复杂的相互作用。

• 同位360度传感器覆盖:DeepSense V2V数据集利用包括摄像头、雷达、LiDAR、定位传感器和毫米波通信设备在内的多样化传感器套件,为车辆提供360度覆盖。这种不同传感器模式的集成使得对周围环境的全面理解成为可能,从视觉观测、目标检测、深度感知、定位和无线通信动态中捕获丰富数据。此外,传感器的同位设置允许研究人员更好地关联传感数据。

• 现实世界多样化的场景:DeepSense V2V数据集在真实环境中收集,提供了不同地点、天气条件、照明设置和交通条件下V2V通信场景的真实表示。该数据集准确捕捉了现实世界的复杂性,并融入了变化的交通密度、道路状况和环境影响。

• 大规模数据:开发可伸缩且对数据分布变化(由于环境或部署的变化)具有鲁棒性的深度学习解决方案需要大规模数据集的可用性。DeepSense V2V数据集提供了包含超过125k个数据点的多模态数据样本的大规模集合,涵盖了四个场景。该数据集的大规模性质有助于开发和评估诸如泛化性、对分布变化的鲁棒性等高级算法。

5. 基本原理是啥?

DeepSense6G中的V2V场景利用了一个双车测试平台。车辆/单元1是接收器,配备了四个朝向四个不同方向的毫米波相控阵、一个360度RGB摄像头、四个毫米波FMCW雷达、一个3D激光雷达和一个GPS RTK套件。车辆/单元2是发射器,配备了一个始终朝向接收器的毫米波准全向天线和一个GPS接收器以捕获实时位置信息。图1展示了测试平台的组成。

3ac9ccb1b28c1e6998244e9d59ec9625.png

DeepSense结构:DeepSense场景创建遵循图2所示的一般结构。这种一般结构允许场景创建流程中的大多数任务实现全自动化,进而带来以下优势:(a)更高的数据质量:更少受到人为错误的影响;(b)更高的可重复性:处理方法被准确编码;(c)更好的可扩展性:由于流程是自动化的,任务更容易执行,采用更具挑战性的用例的成本也降低了。当数据收集工作增长到本文所介绍的V2V场景的大小时,这些优势成为至关重要的要求。该结构由三个阶段组成,编码为三个大型Python库:DeepSense Collection、DeepSense Processing和DeepSense Visualization。这些库建立在流行的高性能科学计算工具之上。以下是这三个阶段的简短描述:

• DeepSense 采集:负责将环境信息转换为传感器数据。

• DeepSense 处理:负责将原始传感器数据进行转换、过滤、插值和同步,以形成已处理的 DeepSense 场景。

• DeepSense 可视化:用于辅助和验证处理阶段,并渲染场景视频。

A. 数据采集

数据采集阶段包括从两个单元中的传感器收集数据所需的所有软件和参数配置。车辆/单元1(图1中的前车)包含V2V盒子,这是一个半英寸厚的亚克力外壳,除了GPS外,它容纳了所有传感器。本节将详细介绍盒子内的传感器,但为了简洁起见,省略了盒子的制作过程。车辆/单元2(图1中的后车)包含固定在车辆上的相同GPS和一个安装在三脚架上的相控阵。图3展示了V2V盒子的尺寸及其在车内的位置示意图。

2ce38480ef48638d507c2c733b994b50.png

传感器套件:它包含具有不同功能和限制、不同采样时间和物理接口要求(即电源和连接性)的传感器。所有非通信传感器——四个雷达、3D激光雷达、360°摄像头和两个GPS——都以预定义的采样率连续采集数据。毫米波波束功率采集则不同,其中接收无线电和相控阵被编程触发以每100毫秒收集一个样本。一个波束功率样本包括64个波束的扫描,这些波束在方位角上跨越-45到+45度,并测量每个波束中接收到的功率。这个64值的功率向量是我们通信的单一样本。

e06e4c0bf1037c63daf50981ca0f975d.png

除了毫米波波束功率外,测试平台还包括两个使用L1和L2频段的GPS,以提高精度——根据制造商信息和设备返回的水平稀释度测量值,水平精度始终在真实值的一米范围内。测试平台还配备了一个360°摄像头,用于导出车辆周围的四个90°视图和两个180°视图,从而有效地覆盖所有角度并模拟车辆周围存在多个摄像头的情况。测试平台中的单个激光雷达创建了包含32000个点的3D点云,最大范围可达200米。在距离方面,四个雷达的配置允许最大距离超过200米,但杂波和ADC分辨率等因素在真实的道路情况下阻止了这种范围。有关传感器的更多信息,如每个样本率、每个单元中传感器的位置、特定分辨率和配置,可以查阅表II。

6a6f16d00f6d6fb4a333d3b0fc8e6544.png

收集程序:数据的获取过程如下。首先,在开始收集数据时初始化所有传感器。单元1中的盒子捕获的毫米波功率来自汽车/单元2中的全向发射器。该发射器固定在三脚架上,并手动旋转以确保接收器(单元1)接收到功率。该系统能够实时显示每个波束接收到的功率。这种监控能力主要用于在接收到功率向量经视觉验证后开始车辆移动。轨迹是事先粗略规划的。在整个收集过程中,两辆车都试图保持相对接近,以便在最佳波束中接收到的功率高于噪声本底。随着距离的增加,阻塞也变得更有可能。尽管如此,在视距(Line of Sight,LoS)条件下,最佳波束中的接收功率在500米距离内与噪声是可以区分的。这种距离在V2I(Vehicle-to-Infrastructure,车对基础设施)情况下更容易实现。例如,在V2I情况下,盒子可以充当基站的角色,或者放置在汽车中与作为基站的静态单元进行通信。实际上,这里描述的测试平台可用于一系列V2X(Vehicle-to-Everything,车对万物)应用。

B. 数据处理

DeepSense场景创建的中间阶段是数据处理。虽然DeepSense Collection处理来自传感器的数据获取,通常涉及特定于制造商的注意事项,但DeepSense Processing更普遍地处理与传感器来源无关的数据格式。数据处理阶段包括两个主要阶段:

• 第一阶段:将所有模态的传感器数据转换为带有时间戳的样本。例如,激光雷达传感器捕获的数据通常保存在一个不适合正确数据同步的单个文件中。这一阶段负责提取所有样本和传感器特定数据格式的元数据,并将它们组织在清晰的CSV文件中。它还可以进一步插值数据点(目前仅限于GPS)。

• 第二阶段:过滤、组织、创建连续数据采集序列,并将提取的数据同步到处理过的DeepSense场景中。

第一阶段并行处理不同模态的数据,并为每种模态定制特定步骤。例如,NMEA协议格式的GPS样本与360°摄像头获取的视频数据的处理过程不同。虽然第一阶段的详细描述超出了本讨论的范围,但重要的是要注意,数据和元数据会从它们的原始格式中提取到一个适合第二阶段处理和同步的通用结构中。与第一阶段不同,第二阶段按顺序处理数据,且不特定于数据格式。该阶段主要关注数据同步、过滤、排序、标记和压缩。本次讨论将主要集中于第二阶段的功能。

同步:同步步骤接收在不同时间点和不同采样率下采样的传感器数据,并在单一采样率下获得一组统一的样本。其核心是一个基于时间戳接近度的一对一样本映射。更详细地说,第一步是选择正确的采样率。V2V场景中使用的采样率是10 Hz。下一步是选择一个参考模态来规定其他传感器应尝试逼近的采样间隔。这个参考模态是毫米波功率。然后,对于每个采样间隔,同步阶段选择每个模态最接近该时刻的样本。所有未在任何采样时刻选择的样本都将被丢弃。例如,RGB图像的采样率为30 Hz,但功率的采样率仅为10 Hz;在这一步中,大约三分之二的图像将被丢弃。

过滤涉及根据一组标准拒绝样本。由于过采样,它在同步期间发生,并在其他三种情况下发生:a) 由于采集错误,如空白或重复样本;b) 由于非共存,即由于采集过程中出现问题或人为错误导致传感器没有同时采样;c) 如接下来描述的序列过滤。

序列化是将样本分离成连续样本组的任务。同一序列中的样本告诉用户,这些样本是在恰好0.1秒的时间间隔内获取的。这是必要的,因为传感器故障、人为错误和其他问题可能导致连续性中断,导致样本之间出现大于0.1秒的间隔。当采样连续性被破坏时,序列结束,并在再次实现连续性时开始新的序列。在数据集中标记样本连续性是相关的,因为许多下游(机器学习)任务都依赖于这种连续性。DeepSense准确地记录连续性中断,以便在这些任务中有效使用。

数据标签是数据集使用中可能有用的额外信息。这些标签可以从传感器中提取。例如,GPS报告卫星数量和位置误差,这些信息对于定位研究是有用的。标签也可以从传感器数据中导出;例如,最佳波束标签是通过计算功率较高的波束的索引得出的。或者,标签甚至可能是手动添加的,如地面真实阻塞标签或地面真实边界框,其中标签是直接由人类添加的,或者从有人参与的流程中获得的。总体而言,标签为某些研究人员的用例提供了额外的上下文信息。

为了更高效、灵活和鲁棒地进行数据分发,会进行数据压缩。数据使用7zip工具以5级deflate方法进行8GB分块压缩。结果是文件数量和总大小显著减少,这进而导致数据集用户能够更快、更可靠地下载数据集。压缩阶段还将不同的模态分隔到不同的文件中。因此,研究人员可以仅下载感兴趣的模态。

其他数据修改指的是不属于之前定义类别的调整,目前只有两种这样的修改。第一种是插值,即在插入点之前和之后插入从真实数据点派生出的生成数据。我们进行插值以获取毫米波功率的采样间隔数据。目前,我们只插值GPS数据。GPS插值是线性的,并在索引所有数据的CSV文件中明确标记。CSV通常包含最多四位小数的标签,但插值后的值将有8位小数。对于距离小于1秒的位置和GPS标签插值,仅进行线性位置和GPS标签插值。在所有场景中,少于5%的GPS数据进行了插值。考虑到所考虑的移动性配置文件,我们验证了1秒的插值间隔仍然能很好地近似现实。第二种数据修改的情况是保护隐私。虽然当地法律没有要求在公共场所录制的视频中对面部进行模糊处理,但我们仍然这样做,以提供额外的安全性并保证数据集的广泛可用性。除了这两种情况外,在数据处理过程中没有执行其他数据修改步骤。这包括归一化,意味着数据集中的幅度值直接从传感器中保留。虽然数据集包含所有原始值,但数据可能为了可视化而进行归一化。接下来,我们将介绍最终阶段——数据可视化。

C. 数据可视化

数据可视化在多个方面提供了重要价值:数据集的可解释性和理解性、快速识别感兴趣的样本、更容易识别传播现象(如反射、阻塞、远距离无线电传输)以及更容易发现不利的传感器条件(如光线或天气导致的能见度差和过度的雷达杂波)。为了实现这些优势,DeepSense场景创建流程在DeepSense Viewer库中利用了数据可视化用户界面(UI)。我们使用此UI来验证数据处理的各个阶段,并渲染一个最终场景视频,该视频同步了所有已处理的数据。图4展示了一个场景视频的示例。该图显示了数据集中存在的所有模态,包括两个单元。为了便于可视化,某些模态进行了归一化处理,即确保相关特征不会被定义不当的尺度或不太清晰的色图所隐藏。视频中每一帧显示的数据来自同一时间瞬间,对应于索引CSV的一行。

ddbfe917cd7060df059e6995721ea7da.png

场景视频:通过使用DeepSense Viewer模块中构建的用户界面,我们为每个场景渲染视频,其中数据随时间显示。根据我们的经验,这种视频使数据易于导航,并允许研究人员找到感兴趣的时刻。这些视频以现实世界速度的四倍进行渲染,以便用户可以快速查看数据集的大部分内容。YouTube允许0.25倍的速度控制,这将使速度恢复到现实世界速度,而为了更精细的控制,用户可以使用键盘快捷键逐帧导航视频——因此,视频被渲染为每帧具有不同的样本。这些视频可以在V2V DeepSense场景(即场景36-39)的网页上找到。

6. 实验结果

车辆位置在周围环境中起着至关重要的作用,对传播产生重大影响,从而影响无线通信以及GPS、Lidar和Radar。在图5中,我们展示了通过GPS捕获的接收器位置(为了便于阅读,以100倍的因子进行了下采样),以及数据收集的其他宏观统计数据。场景36和37是在城市之间的长途驾驶中收集的,目标是长途旅行,而场景38和39则更多地侧重于模拟短途城市通勤,因此数据主要在城市内部。因此,我们将场景36和37称为城际场景,将场景38和39称为城市场景。这种差异得到了行驶距离和平均速度的支持。场景36和37以相对较高的平均速度进行了长途旅行,而场景38和39由于城市内的速度限制,以较低的速度行驶了较短的距离。我们进一步在图6中查看了速度分布。

ae92aa02f7844cd1d12334365f75fcf3.png

此外,我们还包括了与访问摄像头、激光雷达和雷达功能相关的照明和天气条件信息。为了完整性,还包含了第一个和最后一个样本的时间,以描述收集的跨度。然而,请注意,在数据采集过程中,数据获取存在间歇性的暂停。这解释了为什么收集的跨度和经过筛选的收集时长经常有不同的数字,前者通常大于后者。这种暂停的一些原因可能与硬件限制有关,例如需要为360度摄像头更换电池,或者可能与收集中的错误有关,例如车辆距离过远导致信号长时间中断,或者当其中一个传感器出现错误并在一段时间内没有获取数据时。我们选择不包括所有模态都不存在的样本。

速度分布可以说明数据集中车辆运动速度的多样性。此外,由于数据采集期间严格遵守了速度限制,我们可以进一步推断出车辆所在道路的类型。道路类型的信息很重要,因为它告诉我们在这些样本中可以期待找到什么样的物体和现象。图6显示了每个场景的速度累积分布。我们可以观察到,城际/乡村场景(36和37)的速度分布更加平坦,且高速段的贡献高于城市场景(38和39)。较高的速度来自高速公路驾驶,而非常低的速度则是由交通灯、交叉路口和停车标志导致的,这些都是密集城市交通的特点。我们还标出了美国亚利桑那州的速度限制规定,单位为英里/小时。这些信息使我们能够估计,例如,场景38中的车辆在超过20%的时间里因交通灯而停车,而场景39中的车辆在所有时间都在行驶。

97c3d8ab664d06fc4861c2383a598d10.png

接收器和发射器之间的距离以及最优波束中的接收功率与视距(LoS)链路的无线电传播理论密切相关。由于这个数据集使用了毫米波频率,这在大多数情况下需要视距,因此这个数据集应该反映功率-距离关系。我们通过图7绘制了距离(或者更准确地说是距离平方的倒数)和接收功率的关系图,展示了所有场景中的这种关系。图7显示了距离和接收功率之间的强相关性。但也存在相关性被打破的情况(例如,在场景36的第7500个到第8100个样本之间),这是由于阻塞和非视距(NLoS)造成的。此外,应该注意的是,这个数据集中的功率不是以瓦特为单位的。我们通过计算基带样本幅度的平方来获取基带功率。在天线处准确测量接收功率需要对接收器和发射器都进行困难的校准过程。相反,我们尝试始终在所有组件的线性区域内进行数据采集。因此,距离和接收功率之间的关系应该成立。图7中的结果支持了这一观点。

aeae60294361adecd3e72e7fdf7120ed.png

7. 总结 & 未来工作

本文介绍了DeepSense V2V,即DeepSense6G数据集中的车对车(Vehicle-to-Vehicle, V2V)场景。我们对该数据集进行了深入探索,阐述了其创建过程以及在通信、感知和定位交互中的潜在应用。首先,我们详细介绍了DeepSense6G场景创建流程,包括数据收集、处理和可视化。随后,我们展示了数据集的多样性,提供了关于不同道路类型和位置、车辆速度、波束分布以及与道路相关的对象检测的全面统计信息。作为实际示例,我们利用该数据集基于GPS位置预测波束方向。我们期待这个数据集能够成为学术界和工业界研究的重要资源,促进无线通信领域的研究,并推动自动驾驶技术的发展。

对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

本文仅做学术分享,如有侵权,请联系删文。

3D视觉工坊交流群

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉大模型工业3D视觉SLAM自动驾驶三维重建无人机等方向,细分群包括:

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

大模型:NLP、CV、ASR、生成对抗大模型、强化学习大模型、对话大模型等

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

除了这些,还有求职硬件选型视觉产品落地最新论文3D视觉最新产品3D视觉行业新闻等交流群

添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

f3afeb82e01b96d6683c7b34f576ce6b.png
▲长按扫码添加助理
3D视觉工坊知识星球

3D视觉从入门到精通知识星球、国内成立最早、6000+成员交流学习。包括:星球视频课程近20门(价值超6000)项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

cf12adf6bd0af2cf0191074046bd27ab.jpeg
▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

具身智能、3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、三维视觉C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪,无人机等

dff7ecd2fe62f2352767506c1d68d42b.jpeg
▲长按扫码学习3D视觉精品课程
3D视觉模组选型:www.3dcver.com

763f1c0608e262e23d173a8a866105f2.png


—  —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 

outside_default.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值