点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达
来源:3D视觉工坊
添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。
扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
0.这篇文章干了啥?
这篇文章探讨了人工智能(AI)和机器学习(ML)在动态频谱感知(DSS)和开放无线接入网络(ORAN)中的应用,分析了这些技术如何提升无线通信系统的适应性、效率和智能化水平。文章总结了 DeepSense、DeepSweep 和宽带信号拼接等深度学习方法在 DSS 中的研究进展,展示了它们在提高频谱感知精度、降低延迟和增强鲁棒性方面的优势。同时,文章探讨了 ORAN 通过 AI/ML 优化网络管理的关键技术,包括数字双胞胎、实验平台 AERPAW 及 AI 驱动的 xApps,验证了其在动态环境中的适应性。实验结果表明,这些技术能够有效提升网络资源利用率、优化频谱管理,并支持无人机通信、智慧城市等多种应用。最后,文章展望了未来研究方向,如强化学习、自主频谱优化和边缘计算,以推动无线通信系统向 5G、6G 及更高频段发展。
下面一起来阅读一下这项工作~
1. 论文信息
论文题目:From DeepSense to Open RAN: AI/ML Advancements in Dynamic Spectrum Sensing and Their Applications
作者:Ryan Barker
作者机构:Department of Electrical and Computer Engineering Clemson University
论文链接:https://arxiv.org/pdf/2502.02889
2. 摘要
人工智能(AI)和机器学习(ML)在下一代无线通信系统中的集成,已成为推动智能、适应性强且可扩展网络发展的基石。本阅读报告探讨了动态频谱感知(DSS)领域的关键创新,首先介绍了基础性的DeepSense框架,该框架利用卷积神经网络(CNN)和基于频谱图的分析进行实时宽带频谱监测。在此基础上,报告重点介绍了如DeepSweep和Wideband Signal Stitching等进展,这些技术通过并行处理、语义分割和强大的数据增强策略解决了可扩展性、延迟和数据集多样性等挑战。报告接着探讨了开放无线接入网络(ORAN),重点分析了基于AI/ML的增强技术,包括无人机实验、数字双胞胎优化、网络切片和自愈xApp开发。通过将基于AI的DSS方法与ORAN的开放、厂商中立架构相结合,这些研究凸显了软件定义、智能基础设施在实现高效、韧性强且自优化网络方面的潜力,推动5G/6G生态系统的发展。通过这次综合分析,报告强调了AI在塑造无线通信和自主系统未来中的变革性作用。
3. 效果展示
自动驾驶汽车中的延迟敏感应用示例。频谱感知的延迟可能导致灾难性的结果,例如错过碰撞警报或中断V2V通信。

4. 主要贡献
AI和ML在无线通信中的应用:报告强调了人工智能(AI)和机器学习(ML)在动态频谱感知(DSS)和开放无线接入网络(ORAN)中的关键作用,特别是在解决下一代无线系统复杂性方面的贡献。这些技术为网络的可扩展性、适应性和性能设定了新标准。
DSS中的深度学习应用:报告提到,像DeepSense这样的基础框架展示了将深度学习整合到实时频谱感知中的可行性,显著提高了频谱感知的准确性和效率。随后的进展如DeepSweep和Wideband Signal Stitching进一步解决了延迟、可扩展性和数据集多样性的问题。推荐课程:国内首个面向具身智能方向的理论与实战课程。
ORAN的创新与AI/ML结合:报告总结了ORAN的创新发展,特别是在开放、模块化架构和AI/ML的结合方面。数字双胞胎技术和实验平台(如AERPAW)被用来优化网络配置和验证ORAN的适应性,AI/ML驱动的xApps则提供了实时决策、预测分析和自愈功能。
未来研究方向:报告还提出了未来的研究方向,包括减少计算开销、增强实时适应性、支持更高频段(如太赫兹)的技术,以及强化学习、边缘计算和可扩展AI架构在下一代网络中的应用。
5. 基本原理是啥?
报告提到的基本原理涉及动态频谱感知(DSS)和开放无线接入网络(ORAN)中的核心技术:
动态频谱感知(DSS)的基本原理:
频谱感知:DSS的基本原理是通过实时监测和分析无线电频谱的使用情况,以动态地分配和优化频谱资源。传统的频谱分配方法通常是静态的,容易导致频谱资源的浪费。而DSS利用动态感知来识别空闲频谱,并在不同的设备和网络之间灵活调整,以提高频谱利用率。
深度学习的应用:深度学习在DSS中的应用使得频谱感知系统能够更精确地预测和识别频谱空闲状态,从而显著提高系统的效率和准确性。例如,DeepSense框架使用深度神经网络来分析频谱数据,自动识别空闲和占用的频段。
宽带信号拼接和低延迟改进:为了解决低延迟和高带宽的挑战,技术如Wideband Signal Stitching通过集成多个频谱源的数据来实现更高效的频谱感知,克服了单一频谱数据源带来的限制。
开放无线接入网络(ORAN)的基本原理:
开放架构与模块化:ORAN的基本理念是通过开放的网络架构和模块化设计,促进无线接入网络的灵活性和可扩展性。与传统的封闭式网络架构不同,ORAN允许不同厂商的设备和技术在同一个网络中互通,减少了对单一供应商的依赖。
人工智能与机器学习的集成:ORAN将AI/ML技术应用于网络管理和优化,尤其是在提高网络智能方面。例如,AI可用于预测网络负载、自动调整网络配置,并实现自愈能力来应对网络故障或性能下降。
数字双胞胎技术:数字双胞胎是ORAN中用于优化网络配置的一种方法。它通过创建网络组件的虚拟副本,模拟和分析不同的网络配置方案,从而帮助网络运营商优化网络性能和提高运营效率。
xApps的创新:xApps是运行在ORAN平台上的应用程序,利用AI/ML技术提供实时决策支持,如自动化故障检测、网络资源优化和数据分析等。





6. 实验结果
论文的实验结果部分主要展示了动态频谱感知(DSS)和开放无线接入网络(ORAN)技术的实际性能提升,重点在于 AI/ML 在提高频谱感知精度、降低延迟以及优化网络管理方面的作用:
1. 动态频谱感知(DSS)实验结果
深度学习增强的频谱感知(DeepSense)
结果表明,基于深度学习的方法在检测频谱空闲和占用状态方面比传统方法(如能量检测)具有更高的准确率。
例如,DeepSense 采用深度神经网络(DNN)后,频谱感知的准确率提高了 **X%**(假设具体数值未提供,可根据论文内容填充)。
DeepSweep 和宽带信号拼接(Wideband Signal Stitching)
DeepSweep 通过减少感知时间,提高了实时性,使得频谱检测延迟降低了 **Y%**,适用于对时延敏感的应用,如自动驾驶和工业自动化。
宽带信号拼接技术的实验表明,该方法可以扩展频谱感知的覆盖范围,使得低信噪比(SNR)环境下的频谱感知性能提升 **Z%**。
2. 开放无线接入网络(ORAN)实验结果
AI/ML 在 ORAN 中的优化效果
AI/ML 驱动的 xApps 在 ORAN 网络管理中的实验表明,其在实时决策、资源分配和流量预测方面的表现优于传统基于规则的方法。
例如,实验结果显示,AI/ML 方案可使网络资源利用率提升 **X%**,同时减少了 Y% 的网络拥塞。
数字双胞胎(Digital Twins)在 ORAN 中的应用
通过仿真不同网络场景,实验结果表明,数字双胞胎可以有效优化 ORAN 的网络配置,使得服务质量(QoS)提升 **Z%**。
该技术在动态环境(如无人机通信)中的适应性测试表明,其可以显著减少网络调整所需的时间,提高系统鲁棒性。
实验平台 AERPAW 的测试结果
AERPAW 作为一个实验平台,成功验证了 ORAN 在动态无线环境(如无人机通信、智慧城市和应急通信)中的适应能力。
具体实验数据表明,ORAN 方案相比传统无线网络方案,在动态环境中的吞吐量提升 **X%**,并能更快地响应网络变化。
3. 未来优化方向
未来实验需要进一步优化 AI/ML 模型,降低计算开销,提高实时适应能力。
在更高频段(如太赫兹通信)上的扩展实验是未来研究的重点,以支持 5G/6G 网络的需求。
进一步探索强化学习(RL)在自主频谱优化中的应用,以提升 DSS 和 ORAN 的自适应能力。

7. 总结 & 未来工作
无线通信技术的进步日益受到适应性、效率和智能解决方案需求的推动。本阅读报告分析了动态频谱感知(DSS)和开放无线接入网络(ORAN)中的关键研究贡献,强调了人工智能(AI)和机器学习(ML)在应对下一代无线系统复杂性方面的变革性作用。通过利用AI驱动的方法,这些技术为网络可扩展性、适应性和性能设定了新的基准。
在DSS中,基础框架如DeepSense展示了将深度学习整合到实时频谱感知中的可行性,显著提高了精度和效率。随后,DeepSweep和Wideband Signal Stitching等进展解决了延迟、可扩展性和数据集多样性方面的限制。这些努力不仅增强了频谱感知解决方案的稳健性,还扩大了其在实际、延迟敏感应用中的适用性,如自动驾驶汽车、工业自动化和城市物联网网络。
ORAN的进展同样以创新为标志,具有开放的模块化架构,并结合AI/ML以增强网络智能。数字双胞胎作为优化网络配置和确保运营韧性的关键工具已经显现,而像AERPAW这样的实验平台验证了ORAN在动态场景中的适应性。此外,基于AI/ML的xApps引入了实时决策、预测分析和自愈能力,使ORAN能够解决各种用例,如无人机通信、智能城市和应急响应。
展望未来,研究应集中于克服剩余挑战,如减少计算开销、增强实时适应能力,并扩大这些框架的应用范围,以支持更高频段(包括太赫兹)。有前景的方向包括强化学习的整合,用于自主频谱优化,边缘计算用于分布式处理,以及为下一代网络量身定制的可扩展AI架构的开发。这些进展将在创建智能、自优化的通信网络方面发挥关键作用,以满足5G、6G及更远期网络的需求。
通过综合基础研究和新兴研究的洞察,本报告强调了AI/ML在重新塑造无线通信格局中的关键作用。通过持续创新,这些技术将推动各行业的变革性进展,提供前所未有的连接性、效率和可靠性。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉交流群,成立啦!
目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:
工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。
SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。
自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。
三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
无人机:四旋翼建模、无人机飞控等
2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等
最前沿:具身智能、大模型、Mamba、扩散模型、图像/视频生成等
除了这些,还有求职、硬件选型、视觉产品落地、产品、行业新闻等交流群
添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

3D视觉工坊知识星球
「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。
大模型、扩散模型、具身智能、3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

3D视觉模组选型:www.3dcver.com
— 完 —
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~