那个很能打的百度,今天回来了。

来源:沉默王二

添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。

扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

AI 是真的能卷,这不,百度发布了两款最新的大模型,4.5 的基础模型,和 x1 的推理模型。

更重要的是,百度兑现了之前的承诺,免费给所有用户开放。

我上手体验了 10 分钟,感觉还是挺不错的。就比如说拿 V 站上最新的一个问题:都说 C++开发效率比 Java 低,但 C++的 hello world 也没多几行代码啊。

#c++
#include <iostream>
int main() {
    std::cout << "Hello, World!" << std::endl;
    return 0;
}
#java
public class Main {
    public static void main(String[] args) {
        System.out.println("Hello, World!");
    }
}

来让文心 4.5 和文心 x1 来做个回答。都是完全能够回答到点子上的,并且影响速度非常快。

比如说 C++ 需要手动管理内存,Java 可以自动回收垃圾;C++ 需要处理头文件依赖、模板实例化等,Java 通过 Maven 和 Gradle 可以高度自动化;C++ 的 gdb 调试器复杂,Java 的 IDE、热部署、JIT 都很成熟。

看到这,你可能以为百度在偏向 Java,但其实真的不是。4.5 给出了这样一个非常客观的结论。

对于简单的 hello world,C++ 和 Java 开发效率差不多;但在大型项目中,C++ 的复杂性和编译时间,以及内存管理问题会被放大。

C++ 适合需要高性能和底层控制的场景(如游戏引擎、嵌入式系统)。

从官方评测的数据来看,文心 4.5 比 GPT 4o 强一些。

不过从我个人的使用体验上来看,4o 在 3.12 号之前确实表现有点差(不知道为什么),但从这天之后突然就变得好了起来。

我本来已经取消了一个月 20 每天的订阅,也是从这天后又订阅了上。

AI 这种你追我赶的场面,对于我们用户来说,是极大的利好。

我平常的学习和工作当中,基本上已经离不开 AI 了。像搜一些东西的话,我会用秘塔搜索,因为它可以给出原文链接,最原始的参考。

这对于一些需要求真伪的场景,真的非常有用。

对于一些需要总结和提炼的知识点,我会横向对于多家大模型给出的结果,看看谁的语义更符合我的诉求,然后再结合自己的认知去提炼。

按理说,像秘塔搜索这种应用场景,应该由百度来亲自完成。

我也很期待,未来的百度能够充分考量到这一点,把搜索引擎的优势和自家大模型的优势结合起来,去重塑已有的产品。

这样的话,那个很能打的百度,可真就要回来了。

新的模型在不断地发布,大家都可能会经历领先-落后-又领先的循环

就这样,让 AI 继续卷下去吧。而我们人,所需要做的就是,掌握它,利用它。

三分恶面渣逆袭

30.为什么要两阶段提交呢?

为了保证 redo log 和 binlog 中的数据一致性,防止主从复制和事务状态不一致。

阿里:MySQL 两阶段提交
为什么 2PC 能保证 redo log 和 binlog 的强⼀致性?

假如 MySQL 在预写 redo log 之后、写入 binlog 之前崩溃。那么 MySQL 重启后 InnoDB 会回滚该事务,因为 redo log 不是提交状态。并且由于 binlog 中没有写入数据,所以从库也不会有该事务的数据。

阿里:2PC 可以保证redo log 和 binlog 的数据一致性

假如 MySQL 在写入 binlog 之后、redo log 提交之前崩溃。那么 MySQL 重启后 InnoDB 会提交该事务,因为 redo log 是提交状态。并且由于 binlog 中有写入数据,所以从库也会同步到该事务的数据。

伪代码如下所示:

// 事务开始
begin;

// try
{
    // 执行 SQL
    execute SQL;

    // 写入 redo log 并标记为 prepare
    write redo log prepare xid;

    // 写入 binlog
    write binlog xid sql;

    // 提交 redo log
    commit redo log xid;
}
// catch
{
    // 回滚 redo log
    innodb rollback redo log xid;
}

// 事务结束
end;
XID 了解吗?

XID 是 binlog 中用来标识事务提交的唯一标识符。

mysql:xid

在事务提交时,会写入一个 XID_EVENT 到 binlog,表示这个事务真正完成了。

Log_name         | Pos  | Event_type     | Server_id | End_log_pos | Info      
| mysql-bin.000003 | 2005 | Gtid           |   1013307 |        2070 | SET @@SESSION.GTID_NEXT= 'f971d5f1-d450-11ec-9e7b-5254000a56df:11'                 |
| mysql-bin.000003 | 2070 | Query          |   1013307 |        2142 | BEGIN                                                                              |
| mysql-bin.000003 | 2142 | Table_map      |   1013307 |        2187 | table_id: 109 (test.t1)                                                            |
| mysql-bin.000003 | 2187 | Write_rows     |   1013307 |        2227 | table_id: 109 flags: STMT_END_F                                                    |
| mysql-bin.000003 | 2227 | Xid            |   1013307 |        2258 | COMMIT/* xid=121 */

它不仅用于主从复制中事务完整性的判断,也在崩溃恢复中对 redo log 和 binlog 的一致性校验起到关键作用。

XID 可以帮助 MySQL 判断哪些 redo log 是已提交的,哪些是未提交需要回滚的,是两阶段提交机制中非常关键的一环。

  1. Java 面试指南(付费)收录的百度同学 2 技术 2 面面试原题:redo log、bin log


本文仅做学术分享,如有侵权,请联系删文。

3D视觉交流群,成立啦!

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

最前沿:具身智能、大模型、Mamba、扩散模型、图像/视频生成等

除了这些,还有求职硬件选型视觉产品落地、产品、行业新闻等交流群

添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

▲长按扫码添加助理:cv3d001
3D视觉工坊知识星球

「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

卡尔曼滤波、大模型、扩散模型、具身智能、3DGS、NeRF结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真C++、三维视觉python、dToF、相机标定、ROS2机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

▲ 长按扫码学习3D视觉精品课程

3D视觉模组选型:www.3dcver.com

—  —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值