来源:沉默王二
添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。
扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
AI 是真的能卷,这不,百度发布了两款最新的大模型,4.5 的基础模型,和 x1 的推理模型。
更重要的是,百度兑现了之前的承诺,免费给所有用户开放。
我上手体验了 10 分钟,感觉还是挺不错的。就比如说拿 V 站上最新的一个问题:都说 C++开发效率比 Java 低,但 C++的 hello world 也没多几行代码啊。
#c++
#include <iostream>
int main() {
std::cout << "Hello, World!" << std::endl;
return 0;
}
#java
public class Main {
public static void main(String[] args) {
System.out.println("Hello, World!");
}
}
来让文心 4.5 和文心 x1 来做个回答。都是完全能够回答到点子上的,并且影响速度非常快。
比如说 C++ 需要手动管理内存,Java 可以自动回收垃圾;C++ 需要处理头文件依赖、模板实例化等,Java 通过 Maven 和 Gradle 可以高度自动化;C++ 的 gdb 调试器复杂,Java 的 IDE、热部署、JIT 都很成熟。
看到这,你可能以为百度在偏向 Java,但其实真的不是。4.5 给出了这样一个非常客观的结论。
对于简单的 hello world,C++ 和 Java 开发效率差不多;但在大型项目中,C++ 的复杂性和编译时间,以及内存管理问题会被放大。
C++ 适合需要高性能和底层控制的场景(如游戏引擎、嵌入式系统)。
从官方评测的数据来看,文心 4.5 比 GPT 4o 强一些。

不过从我个人的使用体验上来看,4o 在 3.12 号之前确实表现有点差(不知道为什么),但从这天之后突然就变得好了起来。
我本来已经取消了一个月 20 每天的订阅,也是从这天后又订阅了上。
AI 这种你追我赶的场面,对于我们用户来说,是极大的利好。
我平常的学习和工作当中,基本上已经离不开 AI 了。像搜一些东西的话,我会用秘塔搜索,因为它可以给出原文链接,最原始的参考。

这对于一些需要求真伪的场景,真的非常有用。
对于一些需要总结和提炼的知识点,我会横向对于多家大模型给出的结果,看看谁的语义更符合我的诉求,然后再结合自己的认知去提炼。
按理说,像秘塔搜索这种应用场景,应该由百度来亲自完成。
我也很期待,未来的百度能够充分考量到这一点,把搜索引擎的优势和自家大模型的优势结合起来,去重塑已有的产品。
这样的话,那个很能打的百度,可真就要回来了。
新的模型在不断地发布,大家都可能会经历领先-落后-又领先的循环。
就这样,让 AI 继续卷下去吧。而我们人,所需要做的就是,掌握它,利用它。
三分恶面渣逆袭
30.为什么要两阶段提交呢?
为了保证 redo log 和 binlog 中的数据一致性,防止主从复制和事务状态不一致。

为什么 2PC 能保证 redo log 和 binlog 的强⼀致性?
假如 MySQL 在预写 redo log 之后、写入 binlog 之前崩溃。那么 MySQL 重启后 InnoDB 会回滚该事务,因为 redo log 不是提交状态。并且由于 binlog 中没有写入数据,所以从库也不会有该事务的数据。

假如 MySQL 在写入 binlog 之后、redo log 提交之前崩溃。那么 MySQL 重启后 InnoDB 会提交该事务,因为 redo log 是提交状态。并且由于 binlog 中有写入数据,所以从库也会同步到该事务的数据。
伪代码如下所示:
// 事务开始
begin;
// try
{
// 执行 SQL
execute SQL;
// 写入 redo log 并标记为 prepare
write redo log prepare xid;
// 写入 binlog
write binlog xid sql;
// 提交 redo log
commit redo log xid;
}
// catch
{
// 回滚 redo log
innodb rollback redo log xid;
}
// 事务结束
end;
XID 了解吗?
XID 是 binlog 中用来标识事务提交的唯一标识符。

在事务提交时,会写入一个 XID_EVENT 到 binlog,表示这个事务真正完成了。
Log_name | Pos | Event_type | Server_id | End_log_pos | Info
| mysql-bin.000003 | 2005 | Gtid | 1013307 | 2070 | SET @@SESSION.GTID_NEXT= 'f971d5f1-d450-11ec-9e7b-5254000a56df:11' |
| mysql-bin.000003 | 2070 | Query | 1013307 | 2142 | BEGIN |
| mysql-bin.000003 | 2142 | Table_map | 1013307 | 2187 | table_id: 109 (test.t1) |
| mysql-bin.000003 | 2187 | Write_rows | 1013307 | 2227 | table_id: 109 flags: STMT_END_F |
| mysql-bin.000003 | 2227 | Xid | 1013307 | 2258 | COMMIT/* xid=121 */
它不仅用于主从复制中事务完整性的判断,也在崩溃恢复中对 redo log 和 binlog 的一致性校验起到关键作用。
XID 可以帮助 MySQL 判断哪些 redo log 是已提交的,哪些是未提交需要回滚的,是两阶段提交机制中非常关键的一环。
Java 面试指南(付费)收录的百度同学 2 技术 2 面面试原题:redo log、bin log
本文仅做学术分享,如有侵权,请联系删文。
3D视觉交流群,成立啦!
目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:
工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。
SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。
自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。
三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
无人机:四旋翼建模、无人机飞控等
2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等
最前沿:具身智能、大模型、Mamba、扩散模型、图像/视频生成等
除了这些,还有求职、硬件选型、视觉产品落地、产品、行业新闻等交流群
添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

3D视觉工坊知识星球
「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。
卡尔曼滤波、大模型、扩散模型、具身智能、3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

3D视觉模组选型:www.3dcver.com
— 完 —
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~