799 香槟塔

该文章描述了一个使用动态规划解决香槟塔问题的算法。在香槟塔中,从顶层开始倒入香槟,满溢后会平均流向两侧。通过建立二维数组dp来记录每层每个杯子的香槟流量,初始顶层流量等于倒入的香槟数。算法逐层处理,更新每个杯子的流量,直到查询的杯子位置。最后返回该位置的杯子内香槟量不超过1的部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

我们把玻璃杯摆成金字塔的形状,其中 第一层 有 1 个玻璃杯, 第二层 有 2 个,依次类推到第 100 层,每个玻璃杯 (250ml) 将盛有香槟。

从顶层的第一个玻璃杯开始倾倒一些香槟,当顶层的杯子满了,任何溢出的香槟都会立刻等流量的流向左右两侧的玻璃杯。当左右两边的杯子也满了,就会等流量的流向它们左右两边的杯子,依次类推。(当最底层的玻璃杯满了,香槟会流到地板上)

代码-动态规划

本题的重点感觉在于仔细理解题目意思,用什么算法反而是次要的了,这一题是有可能出现当前层的酒杯还没有全部都装满,但是下一层已经有酒流入了。
用数组dp[i][j]记录香槟塔位置(i,j)的酒杯的香槟酒流量,那么显然顶层(0,0)的流量等于倒入的香槟酒总数。
其中一层头尾的两个杯子,只和上一层头尾的两个杯子流量有关,而且它们必然是相等的。
而对于非头尾的杯子,和上一层的两个杯子流量有关。
要区分容量和流量两个概念,最后位置(i,j)的杯子装的香槟不可能超过1

class Solution:
    def champagneTower(self, poured: int, query_row: int, query_glass: int) -> float:
        # dp[i][j]记录位置(i,j)的杯子经过的酒流量
        dp=[[0]*(query_row+1) for _ in range(query_row+1)]
        # 初始化:顶层的流量一定是倒入的香槟数
        dp[0][0]=poured
        # 若j==0 or j==query_row即头尾两个杯子的流量只和上一层头尾两个杯子的流量有关。如果dp[i-1][j]<=1,则dp[i][j]==0,否则dp[i-1][j]=min(1,(dp[i-1][j]-1)*0.5)
        # 对于非头尾的杯子0<j<query_row,dp[i][j]和dp[i-1][j-1]+dp[i-1][j]有关
        for i in range(1,query_row+1):
            for j in range(i+1):
                if j==0 or j==i:
                    if dp[i-1][0]<=1:
                        pass
                    else:
                        dp[i][j]=(dp[i-1][0]-1)*0.5
                if 0<j<i:
                    dp[i][j]=max(0,(dp[i-1][j]-1)*0.5)+max(0,(dp[i-1][j-1]-1)*0.5)
        #print(dp)
        
        return min(1,dp[query_row][query_glass])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值