62. 圆圈中最后剩下的数字

剑指 Offer 62. 圆圈中最后剩下的数字

0,1,···,n-1n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数)。求出这个圆圈里剩下的最后一个数字。

例如,0、1、2、3、45个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3

示例 1:

输入: n = 5, m = 3
输出: 3

示例 2:

输入: n = 10, m = 17
输出: 2

限制:

  • 1 <= n <= 10^5
  • 1 <= m <= 10^6

解题思路

经典的约瑟夫环问题,学过数据结构的同学应该都知道该问题,但那时候是学循环链表的时候引入约瑟夫环问题的,可以直接用现成的循环链表。而这里我们为了解题,特地去构造一个循环链表,显然不太划算,所以考虑其他方法。

递归方式,如图
在这里插入图片描述

Java代码

class Solution {
    public int lastRemaining(int n, int m) {
        if(n == 1) return 0;//如果只剩下一个数字了,递归结束,且该数字在该轮的新编号是0
        return (lastRemaining(n - 1,m) + m) % n;
    }
}

在这里插入图片描述

好的,针对你的问题,我可以给出一个使用动态规划求解圆圈最后剩下数字的思路和 Golang 代码实现。 思路: 我们可以使用一个长度为 n 的数组来表示圆圈所有数字的状态,即数组第 i 个位置的数表示圆圈第 i 个数字当前的状态,0 表示该数字已经被删除,1 表示该数字仍然存在。 接着,我们可以使用一个针来表示当前删除数字的位置,初始值为 0。每次从当前位置开始,依次找到下一个未被删除的数字,并将向该数字的位置。然后将该数字删除(即将其对应的数组元素置为 0),并将针向后移动 m 个位置,即跳过 m-1 个被删除的数字。重复上述步骤,直到剩下最后一个数字最后一个数字即为最后一个被删除的数字的下一个数字,也就是针当前所向的数字。 Golang 代码实现: ```go func LastRemaining(n int, m int) int { nums := make([]int, n) for i := 0; i < n; i++ { nums[i] = 1 } ptr := 0 for count := n; count > 1; count-- { step := (m - 1) % count for i := 0; i < step; i++ { for nums[ptr] == 0 { ptr = (ptr + 1) % n } ptr = (ptr + 1) % n } for nums[ptr] == 0 { ptr = (ptr + 1) % n } nums[ptr] = 0 } for i := 0; i < n; i++ { if nums[i] == 1 { return i } } return -1 } ``` 在上面的代码,我们首先创建一个长度为 n 的数组 nums,并将其所有元素初始化为 1,表示圆圈所有数字都存在。 接着,我们使用一个针 ptr 来表示当前删除数字的位置,初始值为 0。 在每次循环,我们先计算出 m 对当前剩余数字个数 count 取模的结果 step,表示针需要向后移动的距离。 然后,我们依次将针向后移动 step 个位置,跳过被删除的数字最后,我们将向当前第 m 个未被删除的数字,并将其删除。 重复上述步骤,直到圆圈剩下一个数字。最终,我们返回最后一个未被删除的数字的下标。 希望这个回答能够帮到你,如果还有什么疑问,请随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值