文章目录
17. 电话号码的字母组合
给定一个仅包含数字2-9
的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。
给出数字到字母的映射如下(与电话按键相同)。注意 1
不对应任何字母。
示例 1:
输入:digits = "23"
输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]
示例 2:
输入:digits = ""
输出:[]
示例 3:
输入:digits = "2"
输出:["a","b","c"]
提示:
- 0 <= digits.length <= 4
- digits[i] 是范围 [‘2’, ‘9’] 的一个数字。
思路
从示例上来说,输入"23"
,最直接的想法就是两层for
循环遍历了吧,正好把组合的情况都输出了。
如果输入"233"
呢,那么就三层for
循环,如果"2333"
呢,就四层for
循环…
大家应该感觉出和77.组合
遇到的一样的问题,就是这for
循环的层数如何写出来,此时又是回溯法登场的时候了。
理解本题后,要解决如下三个问题:
- 数字和字母如何映射
- 两个字母就两个
for
循环,三个字符我就三个for
循环,以此类推,然后发现代码根本写不出来 - 输入
1 * #
按键等等异常情况(题目提示表示只会输入2-9
,不会输入1 * #
,但是要有考虑异常的意识)
数字和字母如何映射
可以使用map
或者定义一个二维切片,例如:map:map[byte]string
,切片:[]string
,来做映射,我这里定义一个map
,代码如下:
m := map[byte]string{
'2':"abc",
'3':"def",
'4':"ghi",
'5':"jkl",
'6':"mno",
'7':"pqrs",
'8':"tuv",
'9':"wxyz",
}
如果定义成切片,则为如下形式
s :=[]string {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
}
回溯法来解决n个for循环的问题
例如:输入:"23"
,抽象为树形结构,如图所示:
图中可以看出遍历的深度,就是输入"23"
的长度,而叶子节点就是我们要收集的结果,输出["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]
。
回溯三部曲:
1.确定回溯函数参数
首先需要一个字符串s
来收集叶子节点的结果,然后用一个字符串数组res
保存起来,再来看看其他参数,参数肯定是有题目中给的digits string
,然后还要有一个参数就是int
型的index
。
注意这个index
可不是 77.组合
和216.组合总和III
中的startIndex
了。
这个index
是记录遍历第几个数字了,就是用来遍历digits
的(题目中给出数字字符串),同时index
也表示树的深度。
代码如下:
func backtracking(digits string,m map[byte]string,res *[]string,path *[]byte,index int) {}
2.确定终止条件
例如输入用例"23"
,两个数字,那么根节点往下递归两层就可以了,叶子节点就是要收集的结果集。
那么终止条件就是如果index
等于 输入的数字个数len(digits)
了(本来index
就是用来遍历digits
的,和它相等还继续遍历的话,都要下标索引越界了)。
然后收集结果,结束本层递归。
代码如下:
if index == len(digits) {
*res = append(*res,string(*path))
return
}
3.确定单层遍历逻辑
首先要取index
指向的数字,并找到对应的字符集(手机键盘的字符集)。
然后for
循环来处理这个字符集,代码如下:
str := m[digits[index]] // 取数字对应的字符集
for i := 0 ;i < len(str);i++ {
*path = append(*path,str[i]) // 处理
backtracking(digits,m,res,path,index + 1) // 递归,注意index+1,下层递归要处理下一个数字了
*path = (*path)[0:len(*path) - 1] // 回溯
}
注意这里for
循环,可不像是在 77.组合
和216.组合总和III
中从startIndex
开始遍历的。
因为本题每一个数字代表的是不同集合,也就是求不同集合之间的组合,而77. 组合 和216.组合总和III
都是求同一个集合中的组合!
注意
:输入1 * #
按键等等异常情况
代码中最好考虑这些异常情况,但题目的测试数据中应该没有异常情况的数据,所以我就没有加了。
但是要知道会有这些异常,如果是现场面试中,一定要考虑到!
关键地方都讲完了,按照回溯法模板,不难写出如下Go
代码:
版本一
func letterCombinations(digits string) []string {
if len(digits) == 0 {
return nil
}
m := map[byte]string{
'2':"abc",
'3':"def",
'4':"ghi",
'5':"jkl",
'6':"mno",
'7':"pqrs",
'8':"tuv",
'9':"wxyz",
}
res := make([]string,0)
path := make([]byte,0)
backtracking(digits,m,&res,&path,0)
return res
}
func backtracking(digits string,m map[byte]string,res *[]string,path *[]byte,index int) {
if index == len(digits) {
*res = append(*res,string(*path))
return
}
str := m[digits[index]] // 取数字对应的字符集
for i := 0 ;i < len(str);i++ {
*path = append(*path,str[i]) // 处理
backtracking(digits,m,res,path,index + 1) // 递归,注意index+1,下层递归要处理下一个数字了
*path = (*path)[0:len(*path) - 1] // 回溯
}
}
时间复杂度:
O
(
3
m
∗
4
n
)
O(3^m * 4^n)
O(3m∗4n),其中 m
是对应三个字母的数字个数,n
是对应四个字母的数字个数
空间复杂度:
O
(
3
m
∗
4
n
)
O(3^m * 4^n)
O(3m∗4n)
一些写法,是把回溯的过程放在递归函数里了,例如如下代码,我可以写成这样:(注意注释中不一样的地方)
版本二
func letterCombinations(digits string) []string {
// 典型的深度优先搜索,递归题
if digits == "" { return []string{}}
// 建立每个数字与字母的组合关系,方便遍历
m := map[byte]string{
'2':"abc",
'3':"def",
'4':"ghi",
'5':"jkl",
'6':"mno",
'7':"pqrs",
'8':"tuv",
'9':"wxyz",
}
var res []string
// res:结果,digits:输入的数字组合,0:当前遍历到输入的第几个数字了,m:数字与字符串映射关系,"":当前的组合
dfs(&res,digits,0,m,"")
return res
}
// 注意res也是值传递,而在下面函数中可能改变指向,故需要传指针进来
// 注意和版本一参数的不同,这里路径cur用的string类型,而非[]byte
func dfs(res *[]string,digits string,index int,m map[byte]string,cur string) {
// 如果当前遍历的数字已经是最后一个了
if len(cur) == len(digits) {
*res = append(*res,cur)
return
}
// 假如输入“23”,遍历流程为abc,先取a,然后深入下一个数字3,遍历完所有情况ad,ae,af后,才会回到上一层递归,取数字2中的b,然后才再一次深入下一个数字3
for i:= 0; i < len(m[digits[index]]);i++{
// 注意这里与版本一的不同,这里将回溯隐藏在传参中了,利用了值传递的性质
dfs(res,digits,index + 1,m,cur + string(m[digits[index]][i]))
}
}
我不建议把回溯藏在递归的参数里这种写法,很不直观
,所以大家可以按照版本一来写就可以了。
总结
本篇将题目的三个要点一一列出,并重点强调了和前面讲解过的77. 组合 和216.组合总和III
的区别,本题是多个集合求组合,所以在回溯的搜索过程中,都有一些细节需要注意的。
其实本题不算难,但也处处是细节,大家还要自己亲自动手写一写。