- 博客(958)
- 收藏
- 关注
原创 医疗智能体工作流(Agentic Workflow)与检索增强生成(RAG):实时健康监测指南
在针对高风险老年人的互联健康与护理背景下,多智能体系统 (MAS) 与检索增强生成 (RAG) 相结合,为持续性医疗数据分析提供了一种可扩展且响应迅速的架构。本文将探讨以下内容:医疗保健领域中多智能体系统和 RAG 的最新技术综述。一个基于事件驱动工作流和大型语言模型 (LLM) 的代理式实施案例。批判性反思部分(认识论障碍、偏见、过去的错误)。负责任部署需考虑的监管和道德方面(GDPR、HIPAA)。我们强调这些方法如何改变远程监测,帮助医疗专业人员做出更精确、更快速的决策,同时保持对局限性、
2025-06-12 11:14:39
590
原创 【AI大模型】绝了!掌握这个方法,知识库搭建效能直接起飞,建议收藏!!
企业AI落地中第一个要解决的问题就是方向问题,路线问题,怎么走,怎么做。在不清晰的时候,就很容易走错,而代价常常让人难受。很多企业都想做知识库,以为有了知识库就万事大吉了,有了知识库就可以指哪打哪,非常地懂你了。只能很遗憾的说一声,可能你的期望值过高了。知识库的数据准备、构建调测需要花费大量的人力、物力,而结果却不尽如人意。
2025-06-11 14:22:05
433
原创 【AI大模型微调】如何微调推理大模型?以Qwen3/DeepSeek-R1为例
刚好最近在做一个推理训练任务,现在有现成的训练集,推理模型这么强的情况下,怎么把之前传统对话大模型+指令微调训练模式转变成推理大模型+指令微调任务?后训练广义可能范围比较大,包括微调、强化学习等。 可能我们构造强化学习数据集或者思维链数据集的成本比较高的,所以今天咱们就聊一聊怎么偷懒地将把之前的指令数据集或者指令微调的工作推演到推理大模型训练上呢?有没有比较省事或者比较规范的做法呢?
2025-06-11 11:38:19
526
原创 深度对比流行开源智能体 Agent 框架:选择适合你的解决方案
本次重点会放在 LangGraph、Agno、SmolAgents、Mastra、Pydantic AI 和 Atomic Agents 上,我们也会将它们与 CrewAI 和 AutoGen 进行对比。我们将探讨框架实际能做什么、各自的设计选择、它们之间的区别,以及背后不同的设计理念。
2025-06-10 11:57:17
600
原创 AI黑话太多看不懂?一文帮你打通:AI, 机器学习, 大模型, LLM, Agent 都是啥关系
最近是不是感觉整个世界都在聊AI?从ChatGPT、Sora、到Cursor… 人工智能正以前所未有的速度和广度渗透进我们的生活和工作。伴随而来的是一堆高频词汇:大模型(Large Model)、LLM(Large Language Model)、机器学习(Machine Learning)、深度学习(Deep Learning,虽然你没问,但它太重要了,我们也会提一下)、还有最新的智能体(Agent)……
2025-06-10 10:58:37
586
原创 图解 LLM(大语言模型)的工作原理,一文带你从入门到精通AI大模型
回到 LLM 上来说,这些模式的任务就是预测下一个出现的单词。这就和前面讲的条件概率类似:如果给定已经出现过的单词,那下一个最可能出现的单词是哪一个?所以,要预测下一个单词,模型就要根据之前给定的单词(上下文)来为每一个接下来可能出现的单词进行条件概率的计算,条件概率最高的单词就会被作为预测单词所选中。
2025-06-09 12:01:09
884
原创 AI大模型落地差异分析:智能问答→RAG→Agent的提示词结构对比
针对当下大模型比较成熟的几种应用模式,包括智能问答、RAG、Agent、Agent+MCP等等,大家理解时容易陷入两种极端:当你刚开始入门时,看到这些概念一定很混淆,往往把大模型LLM想的很神奇,感觉它什么都能干,什么业务场景都能用。当你通过cherrystudio或dify等工具,按照网上一些教程来实现过一些场景时,往往又会感觉很僵硬,只会照着做,并没有理解大模型LLM的本质。
2025-06-09 11:00:39
903
原创 【Deepseek】全网最全DeepSeek使用手册!学会了效率提高90%【建议收藏】
打不过就加入,英伟达官宣:DeepSeek R1现已正式上线英伟达NIM平台,成为英伟达人工智能企业软件平台的一部分。说什么不重要,重要的是行动够快。DeepSeek打破了英伟达的算力神话,引起整个AI圈的轰动。然后,今天就给大家介绍一下DeepSeek到底该如何使用,让大家更快的掌握DeekSeek使用方法。
2025-06-08 08:00:00
8269
原创 超实用!用 Ollama + DeepSeek + Dify 搭建本地知识库,提升企业效率
现在企业内部信息管理太难了,数据到处都是,检索效率低得可怜,还缺乏智能化支持。尤其是面对海量非结构化数据,企业很难快速提取有价值的信息,决策效率低得不行。要是能有个工具解决这些问题,那可太棒了!
2025-06-07 14:16:31
855
原创 【AI大模型应用】基于知识图谱的城市公园老年人行为识别方法研究,收藏这一篇就够了!!
随着全球老龄化程度不断加深,老年人的生活质量与社会参与日益成为社会关注重点。城市公园作为老年人重要的户外公共活动场所,老年人在这里的行为不仅展现了其行为特征,更深刻反映了老年人与环境的互动关系。因此,高效精准地识别城市公园中老年人的行为,对深入探究老年人户外行为模式、科学评估城市公园适老化建设具有重要意义。本研究创新性地提出了一种基于知识图谱(Knowledge Graph) 的识别老年人城市公园行为的方法。该方法借助图像数据集建立老年人城市公园行为知识图谱,基于实体以及实体之间的关系,利用ComplEx链
2025-06-07 11:31:35
808
原创 拆解、对比与优化:LLM工具智能体的五种任务规划与执行模式
大语言模型(LLM)驱动的 AI 智能体,特别是在借助Tools(工具)来完成复杂任务执行的过程中展现出了巨大的潜力。然而,让智能体能够合理规划任务步骤与执行、避免盲目行动是确保其高效可靠完成目标的关键。本篇将探讨多种 AI 智能体的任务规划与执行模式
2025-06-06 15:22:58
947
原创 智能体开发实战 | 基于Dify+MCP实现理财助手智能体,收藏这一篇就够了!!
AI智能体通过感知环境、自主决策和执行任务,突破传统大模型仅限于语言交互的局限。例如,当用户指令“订一张明天去北京的机票”时,智能体不仅理解语义,还能自动调用航班查询接口、完成支付并同步至日程系统。这种能力使其在客服、医疗、智能制造等领域展现出颠覆性潜力。然而,智能体的开发长期受制于接口碎片化与工具兼容性难题。开发者需为不同数据源编写适配代码,导致60%的开发周期浪费在系统对接上。这一痛点催生了MCP协议的诞生。MCP(Model Context Protocol,模型上下文协议)由Anthropic于
2025-06-05 14:46:53
777
原创 【小白教程】手把手教你基于DeepSeek+RAGFlow搭建企业知识库,全程干货,建议收藏!!
随着大语言模型LLM在各个场景的落地应用,RAG(Retrieval-Augmented Generation,检索增强生成)成为提升模型实用性和准确性的关键技术。企业利用 RAG 开发智能客服,提升响应效率;科研机构整合文献资源,加速知识挖掘;开发者则打造个性化助手,满足多样化需求。如何高效准确构建各自领域的知识库成为影响检索效果的关键,本文介绍基于DeepSeek + RAGFlow的知识库搭建实践,包括以下方面:
2025-06-05 11:32:45
789
原创 AI分页革命!MCP+Agent+大模型实现百万字电子书秒级解析,让大模型榨干每一本电子书
今天我们完成另一个实用的功能,突破大模型上传附件大小限制,完成大文件的阅读和总结。背景说明大模型的附件上传,一般不会超过100M,如果想利用大模型的强项、对于一本体积大的电子书进行快速的阅读和总结,以了解其主要内容,则需要一些特殊处理。
2025-06-04 13:50:48
797
原创 推理“刹不住车”?新框架让DeepSeek-R1们告别过度思考,已开源
DeepSeek-R1、OpenAI o1等推理模型大放异彩。但随着能力增强,一个副作用越来越明显——它们开始想太多了。从奥数题到程序逻辑,能解的题越来越多、推理链条越来越长。也就是说,模型在完成推理任务时,常常出现过度思考:步骤繁冗:明明两步能解完,非要绕七八步,搞得逻辑链又长又乱;表述拖沓:简单结论非要用复杂语言兜圈子,说了一堆才到点子上;输出冗长:生成了大量无效tokens,既浪费算力,又拖慢推理速度。
2025-06-04 11:14:52
429
原创 【AI大模型】真实场景下落地RAG的十条建议及RAG中如何提升个性化?看完这篇你就知道了!!
RAG无处不在、无孔不入,却又缝缝补补,且出现了诸如GraphRAG、多模态RAG、Deepresearch等许多变体。RAG的方案人手一份,但是依旧在实际落地过程中出现各类问题。在A2M人工智能创新峰会预热线上分享中进行《RAG的花式变体及落地建议-GraphRAG or 多模态RAG or Deepresearch?》主题报告,在结尾的时候,给出了这10条建议,供各位参考:1、不要为了上RAG而上RAG,尤其是NL2SQL,KBQA这种类型,之前解决的很好的就不要再折腾了。2、不要为了上变体
2025-06-03 18:40:26
781
原创 DeepSeek R1-0528 新开源推理模型(免费且快速)看到就是赚到!!
DeepSeek推出了新模型,但这不是R2!R1-0528是DeepSeek的最新模型,在发布仅数小时后就在开源社区获得了巨大关注。这个悄然发布的模型DeepSeek R1-0528,已经开始与OpenAI的o3一较高下。让我来详细介绍这次更新的新内容。
2025-06-03 11:59:15
934
原创 从神经网络到自注意力机制:一步一步拆解Transformer底层原理,小白也能轻松学会!!
用一句话来概述Transformer架构:通过自注意力机制,捕捉到序列数据中的上线文信息,通过FFN来更深层次的加工这些信息,最后通过并行且多层的Attention和FFN,使得模型能够捕捉到足够的语义、上下文信息,去做出最终的预测。之后根据损失函数(预测结果和真实结果的差异),利用BP(反向传播)计算每个参数的梯度(即每个参数对损失的贡献度),最后根据梯度更新模型的权重,经过不断地调整和优化,使得大模型的预测准确性更高。
2025-06-01 08:00:00
598
原创 AI产品经理的基础知识:一篇文章搞懂Transformer以及扩散模型
这篇文章详细介绍了transformformer以及扩散模型的原理以及来源,我认为作为AI产品经理,这些基础概念一定要知道,否则就很难去考虑哪一类AI模型更加适合自己的用户场景,从而进行产品框架设计。
2025-05-31 08:00:00
914
原创 手把手教你使用 LLM Graph Transformer 构建知识图谱,学不会你来找我!!
在本文中,我们探讨了 LangChain 的 LLM Graph Transformer 及其用于从文本构建知识图谱的双重模式。基于工具的模式是我们的主要方法,利用结构化输出和函数调用,减少了提示工程,并允许属性抽取。另一方面,当工具不可用时,基于提示的模式非常有用,依靠少量示例来指导 LLM。然而,基于提示的抽取不支持属性抽取,也不会产生孤立的节点。
2025-05-30 11:29:07
794
原创 AI Agent & 多智能体系统:“单兵作战”到“团队协作”的进化,收藏这一篇就够了!!
今天来介绍下AI Agent相关的知识,本篇文章主要分为三个部分:AI AgentAgent Framework(LangGraph & Google ADK)Multi-Agent SystemAI Agent(人工智能体)是一种具备自主思考、规划和行动能力的智能系统,它主要包括三个部分:LLM大模型、Tools工具、Prompt提示词
2025-05-30 10:32:42
688
原创 Qwen3技术报告重点:Qwen3如何强化推理能力?看完这篇你就知道了!!!
大模型的推理能力一直是衡量其智能水平的关键指标。近期,Qwen3系列模型在这方面取得了显著突破。通过对Qwen3技术报告的解读,我们可以窥见一套完整的推理能力提升体系。本文将以推理视角,剖析Qwen3推理能力提升的关键环节。
2025-05-29 14:32:00
786
原创 AI编程神器DeepSeek R1升级!程序员3秒钟沉默背后的真相
你有没有注意到,最近程序员群体突然安静了三秒钟?不是因为代码出了bug,而是因为他们发现自己可能正站在历史的转折点上。这个转折点的名字叫 DeepSeek R1。这不只是一次升级,这是一次权力转移我见过很多技术的兴衰。从最早的汇编语言到高级语言,从桌面软件到云计算,每一次重大技术变革都会重新定义"谁能做什么"。但 DeepSeek R1 的这次静默升级,却让我想起了一个更深刻的问题:当机器开始比人类更懂得编程逻辑时,程序员的价值到底在哪里?
2025-05-29 11:41:10
630
原创 程序员平均薪资出炉!你拖后腿了吗?
随着人工智能、大数据等新领域的发展,程序员的薪资将继续保持高位。同时,企业对程序员的要求也将更高,所以程序员们需要不断提升综合能力, 积极拥抱AI, 在技术深度和业务理解力上实现突破,让自己拥有更强的的职场竞争力,拥抱更高的薪资!有数据显示,懂AI的人才薪资涨幅达到30%!从DeepSeek、小米等企业释放出来的招聘信息中,我们也可以看到,AI人才薪资又向前迈了一大步,即使是实习生,也可以月入过万!
2025-05-28 14:54:59
665
原创 AI赋能教育教学:从五大维度分享DeepSeek应用实践经验
“当AI能3分钟生成教案、实时捕捉学生情绪、自动生成科研论文框架时,教师的核心竞争力已转向如何驾驭技术实现教育创新。”作为某重点大学计算机科学与教育技术交叉学科教授,在过去一年中深度应用DeepSeek大模型,实现了教学、科研与管理效能的全面提升。以下从五大维度解析她的实践经验,为教育工作者提供可复用的AI融合路径。
2025-05-28 11:17:47
890
原创 【AI大模型实战】GRPO+Qwen2.5,7B大模型微调实战!看到就是赚到!!
这是国外技术大佬介绍如何训练领域特定模型的文章,作者使用 GRPO 微调 qwen2.5-coder-7B,实现了一个生成日程表的大模型。01问题定义给模型提供一份事件列表(包含开始和结束时间),并告知它哪些事件是高优先级的。目标是创建一个日程安排,使所选事件的总加权时长达到最大化。在这种设定下,高优先级事件的权重为 2,普通事件的权重为 1。
2025-05-27 19:13:42
670
原创 拿下36K的AI产品经理offer,他是如何实现职业转型的?看完这一篇你就懂了!!
随着人工智能技术的飞速发展,AI产品经理这一职位逐渐成为科技行业的香饽饽。不少技术专业的应届生、技术岗、行业经验资深产品经理纷纷转型AI赛道。说白了就是经验与岗位要求不匹配。想转AI产品经理,你要知道AI产品经理分类有哪些?能力模型是什么?工作流程有哪些?然后个人优势和过往经验选择适合领域进行专业提升,提升匹配度。人人都是产品经理 x 起点课堂根据市场需求总结了3类AI产品经理能力模型。看看你适合转哪一种AI产品经理
2025-05-27 18:31:03
830
原创 【小白教程】Ollama本地部署任意大模型(适合企业/个人),看到就是赚到!!
5分钟,教你搭建专属AI助手!不管是个人还是企业,都能轻松部署DeepSeek、Gemma3、Qwen3等主流大模型。本地运行更安全,还能用手机随时访问,提升 10倍生产效率!
2025-05-26 14:51:01
866
原创 【AI大模型知识库】企业级RAG实施指南,企业知识库落地一定不要错过,长文建议收藏
RAG系统配置最佳实践与企业选型指南,企业知识库落地避坑宝典企业级RAG系统配置与框架选型:从需求到实施RAG框架在企业中的深度应用与选型策略企业如何成功实施Cherry Studio、AnythingLLM和RAGFlow?一份指南明白企业级RAG实施指南 ,想要成功实施RAG 不要错过
2025-05-26 11:57:08
774
原创 【AI大模型】MCP 协议为何不如你想象的安全?从技术专家视角解读!收藏这一篇就够了!!
模型上下文协议(Model Context Protocol,MCP)[1]已迅速成为事实意义上的第三方数据源和工具与 LLM 驱动的聊天对话及智能体整合的标准。虽然互联网上充斥着各种可以通过该协议实现的炫酷应用场景,但同时也存在着很多漏洞和限制。
2025-05-25 08:00:00
697
原创 【AI大模型大厂面试真题】小米二面问我PagedAttention,5分钟凉了...
最近有同学在面试中被问到了 vLLM 的 PagedAttention,这篇文章带大家了解其核心原理。
2025-05-24 14:43:31
892
原创 LLM的“记忆”与“推理”该分家了吗?一种全新的训练范式,彻底厘清思考流程
在大型语言模型(LLMs)横扫NLP任务的时代,模型的推理路径却依然是一团迷雾。面对复杂问题,LLMs是凭“记忆”说话,还是靠“推理”得出结论?我们能不能把这两者解耦,从而获得更可控、更可靠的模型行为?
2025-05-24 11:53:24
597
原创 腾讯大模型战略首次全景亮相!智能体平台重磅上线,从“落地可用”到“智能协同”
智能体的开发门槛,又又又被打下来了!昨天,腾讯云在他们的AI产业应用峰会上,正式上线了全新的智能体开发平台,率先在行业内实现零代码配置多智能体协同构建。除了上线智能体开发平台,腾讯云也对从AI Infra到模型到应用的整个体系来了波全面升级。包括混元系列大模型,也迎来了重磅更新。
2025-05-23 14:07:54
649
原创 连大模型的推理机制都讲不清,别和人说你懂AI!建议收藏起来慢慢学!!
这篇文章,不讲模型结构的复杂数学、不谈抽象难懂的技术术语,我们只带你看清一件事:大型语言模型(LLM)到底是怎么一步一步“想清楚”你问题的,然后又是如何推理出一个看似“有逻辑”的答案。读懂这套推理机制,你就不只是一个会用AI的人,而是真正能驾驭AI的人。
2025-05-23 11:12:53
539
原创 吴恩达吹爆懂AI的产品经理:下一个风口,比程序员还吃香
吴恩达 (Andrew Ng) 老师发了一篇文章,他在文章中指出,随着软件开发,特别是原型开发的成本不断降低,对能够决定“构建什么”的人才需求将大幅上升。他特别强调了 AI 产品经理 (AI Product Managem)ent) 的光明前景
2025-05-22 14:17:50
704
原创 全球首家“AI诊所”落地沙特,中国科技企业让AI从“辅助”走向“主诊”
这不是中国智慧医疗技术简单的“出海”,而是一场带有探索意味的实验。它为未来全球各国——尤其是面临医疗资源紧张的国家——提供了一种可能的解决方案。AI诊所不是终点,只是开始。但它让我们真正看见了一种未来:AI,不再只是工具,也不再只是陪伴,而是可以承担起一部分医疗责任的“新医生”。
2025-05-22 11:36:59
471
原创 你真的了解大模型怎么“调”?四种主流LLM微调方法详解!
今天我们就来聊聊四种LLM微调方法,帮你高效优化模型,轻松应对各种场景。这四种方法分别是:Full-tuning(全量微调)、Freeze-tuning(冻结部分参数微调)、LoRA(低秩适应)和QLoRA(量化低秩适应)。它们各有绝活,能在不同情况下帮你省时省力又保证效果。接下来,我们就用大白话把它们讲明白。
2025-05-21 15:10:46
476
原创 智能体落地“三驾马车”问世:MCP调优工具+A2A协作+AG-UI协议解读
你可能听过MCP、A2A、ANP,今天我想和大家聊聊一个在智能体(Agent)领域非常有意思的话题——AG-UI协议。这个协议由CopilotKit推出,是一套开源的标准化方案,专门用来解决后端Agent和前端UI之间的交互问题。如果你对智能体应用感兴趣,或者正在用LangGraph、CrewAI等工具开发多步骤工作流,那这篇文章一定能给你一些启发。
2025-05-21 12:01:28
592
原创 数据治理 + 知识库 + AI大模型:三步终结企业 “数据内耗”,打造智能决策闭环
一、为什么企业总在 “数据内耗”?三大困局背后的真相**数字化转型喊了十年,但多数企业仍陷在三大泥潭:
2025-05-20 14:30:48
705
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人