自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 层次分析法

数学建模——层次分析法层次分析法引例层次分析法的思想层次分析法层次分析法是一种用于解决评价类问题的数学模型。当面临n个选择对象和m个指标时需要根据这m个指标对n个指标进行打分,从中选择出一个分数最高的对象作为我们最终的选择。引例高考结束后,小明决定在天津理工,天津工业和天津师范中选择一所高校,那他该选择哪所学校呢?在小明的心目中,比较重视大学的学习氛围,校园环境,就业率,男女比例这4个方面对于评价类问题我们应该要注意的是三个问题:1.我们评价的目标是什么?答:我们要选择一所高校2.我们为

2020-10-29 13:16:42 2320

原创 典型相关分析

数学建模——典型相关分析典型相关分析引例定义思路原理及方法典型相关分析研究两组可能包含多个指标的变量之间相关关系的一种多元统计方法。它能够揭示出两组变量内部的关系。引例我们要探究观众和业内人士对于一些电视节目的观点有什么关系呢?观众的评分来自低学历(led)高学历(hed)和网络(net)调查三种,它们形成第一组变量;业内人士的评分来自包括演员和导演在内的艺术家(arti)、发行(com)与业内各部门主管(man)三种,形成第二组变量。如果直接对这些变量的相关性进行两两分析,很难得到关于这两组

2020-09-06 15:49:06 1244

原创 吴教授课程第一次学习

机器学习——吴教授课程机器学习监督学习无监督学习机器学习机器学习的定义:(1)在没有明确设置的情况下,使得计算机具有学习能力的研究领域。(2)计算机程序从经验E中学习解决某一任务T进行某一能量度P,通过P测定在T上的表现因经验E而提高。举一个例子,比如人与电脑成千上万次的对战西洋棋,在这个事件中任务T就是下西洋棋,而E就是成千上万次的练习,而P就是在进行下一棋局时获胜的概率,P会因为E而提高。又或者电脑自动处理垃圾邮件,在这个事件中任务T就是自动处理垃圾邮件,E就是你所认定的垃圾邮件,P就是在出

2020-07-28 17:17:50 330

原创 皮尔逊相关系数

数学建模——相关系数——皮尔逊相关系数相关系数总体皮尔逊相关系数样本皮尔逊相关系数相关系数误区例子相关系数一般在应用中主要使用的是两种相关系数,一种是皮尔逊相关系数,另一种是斯皮尔曼相关系数,此次学习的是皮尔逊相关系数总体皮尔逊相关系数首先来说,什么是总体?总体——我们所要考察的全部个体称之为总体而我们从总体中往往想要的到某些存在于各个个体间的某种关系。那么什么是总体皮尔逊相关系数呢?首先我们需要引入概率论中的几个概念那么两组数据的平均值:总体协方差:这里需要说明下,其实总体协方

2020-07-26 22:24:23 3461

原创 拟合拓展

数学建模——拟合算法拓展cftool工具箱实现快速拟合测试案例cftool工具箱实现快速拟合如果你的matlab版本是2016+,可以直接在APP中直接找到如果你是2016以前版本的你可以直接在命令窗口输入cftool,就会弹出工具箱页面这里是简单的功能介绍这里可以选择自动生成拟合代码,在文件中调用非常方便测试案例这里提供一组数据便于大家进行拟合按照上述步骤选择合适的拟合方法,利用拟合工具箱会得到以下的拟合结果我们会发现拟合效果不是很好,后面的偏离程度比较大,这个时候就需要对初始

2020-07-18 22:31:47 247

原创 计算机视觉基础学习

计算机视觉基础第一章1.1可视化1.2离散化1.3表示1.4噪声第一章1.1可视化将计算机视觉中的数据看成一种依赖于一个或者多个变量的函数,比如:可以将音频看作一个依赖于时间变量的一维函数。换句话说,对于多维数据可视化的最简单的方法就是将其中的非独立变量随着独立变量变化的曲线绘制出来。音频随着时间的变化而变化A(t);图片随着两个空间坐标x,y的变化而变化G(x,y);视频随着两个空间坐标x,y以及时间t的变化而变化T(x,y,t)而人类自身的想象超不出三维的几何结构,色彩被用来对数据进行编码,

2020-07-18 17:54:45 218

原创 数学建模基础学习

数学建模——拟合算法最小二乘法最小二乘法的核心求解k和b如何评判拟合效果呢?拟合疑问实例最小二乘法拟合算法和插值算法比较相似,插值算法所得到的函数必须经过每一个点但拟合算法是要求误差较小,不必要经过所有的已知点最小二乘法的核心最小二乘法是用线性拟合的方法以最小的误差得到近似曲线最小二乘法判断样本点和拟合曲线最接近预测值和真实值的差的平方和最小这就是最小二乘法的核心思想额外说一下,学过概率论的话我们可以知道最小二乘法和极大似然估计求解是一样的。求解k和b在这个公式中k和b作为未知参

2020-07-12 16:25:31 820

原创 机器学习的漫长之路——第一章Python

初学PythonPython的第一次学习python的环境搭建python引例变量名称的定义注释说明Python的第一次学习为了更好的进行计算机视觉的学习和入门机器学习,发现C和C++不是特别的贴切,于是了解到在人工智能领域大部分所使用的代码都是python。python的环境搭建python的开发需要一定的配置要求,你得需要在你自己的计算机上为python的开发配置环境,以便满足开发要求:打开python的官方网站:https://www.python.org/选择于你的机型相对应的环境(这

2020-07-11 17:53:02 301

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除