1098 数学题

题意如下:给定k,找到最小的a,使得对于任意的整数x,且f(x)=5*x^13+13*x^5+k*a*x,f(x)能被65整除,就输出a,如果找不到,输出no

下面是来自论坛的解法分析:

解法很简单了,就是保证(18+k*a)%65==0即可,a是最小满足这个式子的正整数。
分析证明:5*x^13+13*x^5+k*a*x分成两部分,5*x^13+13*x^5 和 k*a*x。
(5*x^13+13*x^5)%65会出现循环,很好证明,我就不写了。
写出循环节可以看出,循环节长度是65,而且是等差数列,步长为18.
然后,保证了x=1时也即是(18+k*a)%65==0成立,那么对于剩下的所有x,f(x)%65都成立。
这个也很简单:
(18+k*a)%65==0
=>k*a=q*m-18(q为整数)
=>那么对于x=2,
(36+k*a*2)=(36+2*(q*m-18))%m=0
以及我的AC代码:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<string>
#include<iomanip>
using namespace std;
const int MAX = 990000000;

int main()
{
    int k,a,flag;
    while(cin>>k)
    {
        flag = 0;
        for(a=0;a<65;a++)
        {
            if((18+k*a)%65 == 0)
            {
                flag = 1;
                break;
            }
        }
        if(flag) cout<<a<<endl;
        else cout<<"no"<<endl;
    }
    return 0;
}


AI实战-泰坦尼克号生还可能性数据集分析预测实例(含19个源代码+59.76 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:19个代码,共121.84 KB;数据大小:1个文件共59.76 KB。 使用到的模块: pandas numpy seaborn matplotlib.pyplot warnings sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix os scipy.stats sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OneHotEncoder sklearn.impute.KNNImputer sklearn.preprocessing.StandardScaler sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor sklearn.metrics.classification_report sklearn.metrics.roc_auc_score sklearn.model_selection.cross_val_score sklearn.pipeline.Pipeline sklearn.model_selection.RandomizedSearchCV sklearn.ensemble.GradientBoostingClassifier sklearn.linear_model.LogisticRegression sklearn.naive_bayes.GaussianNB sklearn.metrics.roc_curve xgboost.XGBClassifier sklearn.ensemble.AdaBoostClassifier sklearn.tree.DecisionTreeClassifier sklearn.preprocessing.LabelEncoder imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.GridSearchCV math sklearn.neighbors.KNeighborsClassifier sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score sklearn.metrics.ConfusionMatrixDisplay torch dataclasses.dataclass typing.List typing.Tuple typing.FrozenSet typing.Set typing.Dict fcapy.lattice.ConceptLattice fcapy.lattice.formal_concept.FormalConcept fcapy.poset.POSet fcapy.visualizer.line_layouts.calc_levels sparselinear.SparseLinear sklearn.neural_network.MLPClassifier fcapy.context.FormalContext fcapy.visualizer.LineVizNx networkx sklearn.preprocessing.MinMaxScaler sklearn.ensemble.BaggingClassifier torch.nn torch.optim sklearn.datasets.load_iris
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值