题意如下:给定k,找到最小的a,使得对于任意的整数x,且f(x)=5*x^13+13*x^5+k*a*x,f(x)能被65整除,就输出a,如果找不到,输出no
下面是来自论坛的解法分析:
解法很简单了,就是保证(18+k*a)%65==0即可,a是最小满足这个式子的正整数。 分析证明:5*x^13+13*x^5+k*a*x分成两部分,5*x^13+13*x^5 和 k*a*x。 (5*x^13+13*x^5)%65会出现循环,很好证明,我就不写了。 写出循环节可以看出,循环节长度是65,而且是等差数列,步长为18. 然后,保证了x=1时也即是(18+k*a)%65==0成立,那么对于剩下的所有x,f(x)%65都成立。 这个也很简单: (18+k*a)%65==0 =>k*a=q*m-18(q为整数) =>那么对于x=2, (36+k*a*2)=(36+2*(q*m-18))%m=0以及我的AC代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<string>
#include<iomanip>
using namespace std;
const int MAX = 990000000;
int main()
{
int k,a,flag;
while(cin>>k)
{
flag = 0;
for(a=0;a<65;a++)
{
if((18+k*a)%65 == 0)
{
flag = 1;
break;
}
}
if(flag) cout<<a<<endl;
else cout<<"no"<<endl;
}
return 0;
}