Part1: 哈夫曼树
给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。
与哈夫曼树有关的概念:
路径: 树中一个结点到另一个结点之间的分支构成这两个结点之间的路径。
路径长度:路径上的分枝数目称作路径长度。
树的路径长度:从树根到每一个结点的路径长度之和。
结点的带权路径长度:在一棵树中,如果其结点上附带有一个权值,通常把该结点的路径长度与该结点上的权值之积称为该结点的带权路径长度。
树的带权路径长度:如果树中每个叶子上都带有一个权值,则把树中所有叶子的带权路径长度之和称为树的带权路径长度。
设某二叉树有n个带权值的叶子结点,则该二叉树的带权路径长度记为:
公式中,Wi为第i个叶子结点的权值;Li为该结点的路径长度。
例如:
哈夫曼树是带权路径长度最小的树,权值较大的结点离根较近。
根据哈弗曼树的定义,一棵二叉树要使其WPL值最小,必须使权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远离根结点。
Huffman算法框架如下:
假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,则哈夫曼树的构造规则为:
(1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点);
(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;
(3) 从森林中删除选取的两棵树,并将新树加入森林;
(4) 重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。
例如:
Part 2: 哈夫曼编码
哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码(有时也称为霍夫曼编码)。
显然字使用频率越小权值越小,权值越小叶子就越靠下,于是频率小编码长,频率高编码短,这样就保证了此树的最小带权路径长度效果上就是传送报文的最短长度。因此,求传送报文的最短长度问题转化为求由字符集中的所有字符作为叶子结点,由字符出现频率作为其权值所产生的哈夫曼树的问题。利用哈夫曼树来设计二进制的前缀编码,既满足前缀编码的条件,又保证报文编码总长最短。
在数据通信中,需要将传送的文字转换成二进制的字符串,用0,1码的不同排列来表示字符。传送报文时总是希望总长度尽可能短。在实际应用中,各个字符的出现频度或使用次数是不相同的,有A,B,C,D,E五个字符,出现的频率(即权值)分别为5,4,3,2,1,自然会想到设计编码时,让使用频率高的用短码,使用频率低的用长码,以优化整个报文编码。
哈夫曼树
各字符对应的哈夫曼编码为:A->11,B->10,C->00,D->011,E->010
例:判定树比较次数最少
在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设计直接影响着程序的执行效率。例如,编制一个程序,将百分制转换成五个等级输出。大家可能认为这个程序很简单,并且很快就可以用下列形式编写出来:
若考虑上述程序所耗费的时间(比较次数),就会发现该程序不一定最优。在实际中,学生成绩在五个等级上的分布是不均匀的。当学生百分制成绩的录入量很大时,上述判定过程需要反复调用,此时程序的执行效率不高。
下面就是在一次考试中某门课程的各分数段的分布情况:
我们就可以利用哈夫曼树寻找一棵最佳判定树,即总的比较次数最少的判定树。