题目描述
Mirko 将 n n n 颗弹子排成一排,依次编号为 1... N 1...N 1...N。 号弹子的颜色为 c [ i ] c[i] c[i] 。他发现,如果他触摸 ≥ k \ge k ≥k 颗连续的弹子,且这些弹子的颜色相同,魔法会使这些弹子消失;此后,这 k k k 颗弹子前面的弹子便与这 k k k 颗弹子后面的弹子相邻。
Mirko 家里有很多弹子,他想在这 颗弹子之间(也可以在开头的弹子前面或末尾的弹子后面)插入尽可能少的弹子,使得这 k k k 颗弹子+插入的所有弹子消失。
输出格式
一行,一个整数,表示他至少要插入几颗弹子。
样例
样例输入 1
2 5
1 1
样例输出 1
3
样例输入 2
5 3
2 2 3 2 2
样例输出 2
2
样例输入 3
10 4
3 3 3 3 2 3 1 1 1 3
样例输出 3
4
可能不是很详细,但这道题思路挺自然的。
我们设 d p [ i ] [ j ] [ s u m ] dp[i][j][sum] dp[i][j][sum] 表示消除区间 [ i , j ] [i,j] [i,j] 在左边添加了 s u m sum sum 个珠子的总添加珠子数。
答案就是 d p [ 1 ] [ n ] [ 0 ] dp[1][n][0] dp[1][n][0] 。
转移方程如下 : : :
- 当 s u m < k − 1 sum<k−1 sum<k−1 (不能消)时再加一个,即 d p [ i ] [ j ] [ s u m ] = m i n ( f [ i ] [ j ] [ s u m ] , f [ i ] [ j ] [ s u m + 1 ] + 1 ) dp[i][j][sum]=min(f[i][j][sum],f[i][j][sum+1]+1) dp[i][j][sum]=min(f[i][j][sum],f[i][j][sum+1]+1)
- 当 s u m = k − 1 sum=k−1 sum=k−1 时直接消掉,即 d p [ i ] [ j ] [ s u m ] = d p [ i + 1 ] [ j ] [ 0 ] dp[i][j][sum]=dp[i+1][j][0] dp[i][j][sum]=dp[i+1][j][0]
- 当
i
i
i 和
i
+
1
i+1
i+1 的颜色相同时,可以把
i
i
i 加到
i
+
1
i+1
i+1 的整体中,即
d
p
[
i
]
[
j
]
[
s
u
m
]
=
d
p
[
i
+
1
]
[
j
]
[
s
u
m
+
1
]
dp[i][j][sum]=dp[i+1][j][sum+1]
dp[i][j][sum]=dp[i+1][j][sum+1]
其实满足消的条件后也可不消,但这已经包含在第三种里了。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cctype>
#include<iomanip>
using namespace std;
int a[105],dp[105][105][105];
int n,k;
int dfs(int l,int r,int sum){
if(l>r)//边界
return 0;
if(dp[l][r][sum]!=-1)//记忆化
return dp[l][r][sum];
int ans=0x3f3f3f3f;
dp[l][r][sum]=0x3f3f3f3f;
if(sum<k-1)//第一种
ans=min(ans,dfs(l,r,sum+1)+1);
else
if(sum==k-1)//直接消
ans=dfs(l+1,r,0);
for(int i=l+1;i<=r;i++)
if(a[i]==a[l])//与后面形成一个整体
ans=min(ans,dfs(l+1,i-1,0)+dfs(i,r,min(k-1,sum+1)));
dp[l][r][sum]=ans;
return ans;
}
int main(){
scanf("%d %d",&n,&k);
memset(dp,-1,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
dfs(1,n,0);
printf("%d",dp[1][n][0]);
return 0;
}