P5189 [COCI 2010] ZUMA

题目描述

Mirko 将 n n n 颗弹子排成一排,依次编号为 1... N 1...N 1...N。 号弹子的颜色为 c [ i ] c[i] c[i] 。他发现,如果他触摸 ≥ k \ge k k 颗连续的弹子,且这些弹子的颜色相同,魔法会使这些弹子消失;此后,这 k k k 颗弹子前面的弹子便与这 k k k 颗弹子后面的弹子相邻。

Mirko 家里有很多弹子,他想在这 颗弹子之间(也可以在开头的弹子前面或末尾的弹子后面)插入尽可能少的弹子,使得这 k k k 颗弹子+插入的所有弹子消失。

输出格式

一行,一个整数,表示他至少要插入几颗弹子。

样例

样例输入 1

2 5
1 1

样例输出 1

3

样例输入 2

5 3
2 2 3 2 2

样例输出 2

2

样例输入 3

10 4
3 3 3 3 2 3 1 1 1 3

样例输出 3

4

可能不是很详细,但这道题思路挺自然的。

我们设 d p [ i ] [ j ] [ s u m ] dp[i][j][sum] dp[i][j][sum] 表示消除区间 [ i , j ] [i,j] [i,j] 在左边添加了 s u m sum sum 个珠子的总添加珠子数。

答案就是 d p [ 1 ] [ n ] [ 0 ] dp[1][n][0] dp[1][n][0]

转移方程如下 : : :

  1. s u m < k − 1 sum<k−1 sum<k1 (不能消)时再加一个,即 d p [ i ] [ j ] [ s u m ] = m i n ( f [ i ] [ j ] [ s u m ] , f [ i ] [ j ] [ s u m + 1 ] + 1 ) dp[i][j][sum]=min(f[i][j][sum],f[i][j][sum+1]+1) dp[i][j][sum]=min(f[i][j][sum],f[i][j][sum+1]+1)
  2. s u m = k − 1 sum=k−1 sum=k1 时直接消掉,即 d p [ i ] [ j ] [ s u m ] = d p [ i + 1 ] [ j ] [ 0 ] dp[i][j][sum]=dp[i+1][j][0] dp[i][j][sum]=dp[i+1][j][0]
  3. i i i i + 1 i+1 i+1 的颜色相同时,可以把 i i i 加到 i + 1 i+1 i+1 的整体中,即 d p [ i ] [ j ] [ s u m ] = d p [ i + 1 ] [ j ] [ s u m + 1 ] dp[i][j][sum]=dp[i+1][j][sum+1] dp[i][j][sum]=dp[i+1][j][sum+1]
    其实满足消的条件后也可不消,但这已经包含在第三种里了。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cctype>
#include<iomanip>
using namespace std;
int a[105],dp[105][105][105];
int n,k;
int dfs(int l,int r,int sum){
	if(l>r)//边界
		return 0;
	if(dp[l][r][sum]!=-1)//记忆化
		return dp[l][r][sum];
	int ans=0x3f3f3f3f;
	dp[l][r][sum]=0x3f3f3f3f;
	if(sum<k-1)//第一种
		ans=min(ans,dfs(l,r,sum+1)+1);
	else
		if(sum==k-1)//直接消
			ans=dfs(l+1,r,0);
	for(int i=l+1;i<=r;i++)
		if(a[i]==a[l])//与后面形成一个整体
			ans=min(ans,dfs(l+1,i-1,0)+dfs(i,r,min(k-1,sum+1)));
	dp[l][r][sum]=ans;
	return ans;
}
int main(){
    scanf("%d %d",&n,&k);
    memset(dp,-1,sizeof(dp));
    for(int i=1;i<=n;i++)
    	scanf("%d",&a[i]);
	dfs(1,n,0);
	printf("%d",dp[1][n][0]);
    return 0;
}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值