【Datawhale AI 夏令营第二期电力需求预测学习笔记】

电力需求预测挑战赛

一句话介绍赛题任务可以这样理解赛题:

【训练时序预测模型助力电力需求预测】

电力需求的准确预测对于电网的稳定运行、能源的有效管理以及可再生能源的整合至关重要。

赛题任务

给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。

赛题数据简介

赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用1-N进行标识。

即1为数据集最近一天,其中1-10为测试集数据。

数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。


TASK1:跑通Baseline

使用百度飞桨平台运行示例代码Baseline

然后提交到赛事平台进行评分


TASK2:开始特征工程

        1.task2的目标是使用数据绘制柱状图和折线图

        2.使用时间序列数据构建历史平移特征和窗口统计特征

        3.使用lightgbm模型进行训练并预测


(1)开头导入的代码如下:

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

(2)绘制不同type类型对应target柱状图

import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'green'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()

绘制完成的柱状图:

绘制id为00037f39cf的按dt为序列关于target的折线图:

specific_id_df = train[train['id'] == '00037f39cf']
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()

绘制的折线图:

(3)特征工程:

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

在这里这里主要构建了 两种特征:历史平移特征 窗口统计特征

  • 历史平移特征:通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。

  • 窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。

  • 到目前为止都很顺利。

(4)模型训练与测试集预测

这里选择使用Lightgbm模型,也是通常作为数据挖掘比赛的基线模型,在不需要过程调参的情况的也能得到比较稳定的分数。

另外需要注意的训练集和验证集的构建:因为数据存在时序关系,所以需要严格按照时序进行切分,

  • 这里选择原始给出训练数据集中dt为30之后的数据作为训练数据,之前的数据作为验证数据

  • 这样保证了数据不存在穿越问题(不使用未来数据预测历史数据)

def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                      categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)


当我运行这段代码时,提示了如下错误:

(自己当时忘了截图,所以从Q&A文档里找了其他同学的相同报错截图)

根据大佬的描述,出现这个错误的原因是在不同版本的 LightGBM 中,可能会有不同的参数命名或功能增减。通常情况下,LightGBM 的更新会增加新的功能和参数,同时修复之前版本中的一些问题。

因此,我们要做的就是卸载当前版本,安装相应的包含这个参数的版本

在终端中输入:

pip uninstall lightgbm

pip install lightgbm==3.3.0

安装完成后就会输出以下内容:

原文链接:lightGBM训练时报错:TypeError: train() got an unexpected keyword argument ‘verbose_eval‘

在改掉了这个报错以后又出现了新的问题:

7.18运行成功了,只是又重装了一遍lightgbm就跑通了。

离线测得的分数:

在线上测得的成绩为:

可见离线和线上的分数差距还是很大,离线的数据不具备参考意义。


TASK3:使用深度学习方案优化

时间序列预测特征提取和分析方法


在进行时间序列分析时,特征提取是一个至关重要的步骤,因为它直接影响到模型的性能。以下是关键特征提取和分析方式的详细介绍:

  1. 日期变量:时间序列数据通常包含日期或时间信息。这可以细分为不同的时间尺度,如年、月、周、日、小时、分钟等。在特征提取时,可以将这些日期变量转换为数值型特征,以便于模型处理。

  2. 周期性:许多时间序列数据表现出周期性,例如,一天中的小时数、一周中的天数、一年中的月份等。识别并利用这些周期性特征可以帮助模型捕捉数据的内在规律。

  3. 趋势性:趋势性是指时间序列数据随时间推移呈现的上升或下降的总体模式。这可以通过诸如移动平均或线性回归等方法来提取,并作为特征输入模型。

  4. 距离某天的时间差:这涉及到从特定日期(如产品发布日、重要事件日等)计算时间差。这种特征可以帮助模型了解数据点与特定事件的相对位置。

  5. 时间特征组合:将不同的时间单位组合起来(如年和周、月和日)可以提供更丰富的时间上下文信息,有助于揭示数据中的复杂模式。

  6. 特殊日期:识别时间序列中的特殊日期或事件(如节假日、促销活动等)并将其作为特征,可以帮助模型解释与这些事件相关的数据波动。

  7. 异常点:时间序列中可能存在异常点,这些点与其他数据点显著不同。正确识别并处理这些异常点对于提高预测精度至关重要。

  8. 时序相关特征

    1. 历史平移:将过去的值作为当前值的函数,例如,使用前一天的值来预测后一天的值。

    2. 滑窗统计:使用时间窗口内的统计数据(如平均值、中位数、标准差等)作为特征,这有助于捕捉局部时间范围内的数据特性。

  9. 强相关特征:识别与目标变量强烈相关的特征,并利用这些特征来构建预测模型。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值