自变量反转和尺度变换的卷积结论

本篇博客重点总结自变量有反转和尺度变换的情况下卷积公式。

自变量有反转的情况

这里我们假定两个卷积的函数分别是 f ( x ) f(x) f(x) g ( − x ) g(-x) g(x),这里的反转实际上是指参与卷积运算的不是 g ( x ) g(x) g(x)而是 g ( − x ) g(-x) g(x)。假定 h ( x ) = g ( − x ) h(x)=g(-x) h(x)=g(x),根据卷积的公式有:
(1) f ( x ) ∗ g ( − x ) = f ( x ) ∗ h ( x ) = ∫ − ∞ + ∞ f ( t ) h ( x − t ) d t = ∫ − ∞ + ∞ f ( t ) g ( t − x ) d t \begin{aligned} f(x)*g(-x)&=f(x)*h(x) \\&=\int_{-\infty}^{+\infty}f(t)h(x-t)dt \\&=\int_{-\infty}^{+\infty}f(t)g(t-x)dt \tag{1} \end{aligned} f(x)g(x)=f(x)h(x)=+f(t)h(xt)dt=+f(t)g(tx)dt(1)

关于上面这个结论的验证,我们可以采用卷积的交换律来验证。
(2) f ( x ) ∗ g ( − x ) = g ( − x ) ∗ f ( x ) = ∫ − ∞ + ∞ g ( − t ) f ( x − t ) d t f(x)*g(-x)=g(-x)*f(x)=\int_{-\infty}^{+\infty}g(-t)f(x-t)dt\tag{2} f(x)g(x)=g(x)f(x)=+g(t)f(xt)dt(2)
这时我们做变量代换,令 s = x − t s=x-t s=xt,于是 d s = − d t ds=-dt ds=dt,对应的积分上下界也会交换, ( 2 ) (2) (2)中的积分就等于
(3) f ( x ) ∗ g ( − x ) = ∫ + ∞ − ∞ g ( s − x ) f ( s ) ( − d s ) = ∫ − ∞ + ∞ g ( s − x ) f ( s ) d s f(x)*g(-x)=\int_{+\infty}^{-\infty}g(s-x)f(s)(-ds)=\int_{-\infty}^{+\infty}g(s-x)f(s)ds\tag{3} f(x)g(x)=+g(sx)f(s)(ds)=+g(sx)f(s)ds(3)
这样就验证了我们在这一节刚刚开始的结论,即公式 ( 1 ) (1) (1)

自变量有尺度变化的情况

这一节我们假定两个卷积的函数分别是 f ( x ) f(x) f(x) g ( a x ) g(ax) g(ax),其中a是任意的常数。可见上面的反转实际上是自变量尺度变化的一种特例。假定 h ( x ) = g ( a x ) h(x)=g(ax) h(x)=g(ax),根据卷积的公式有:
(4) f ( x ) ∗ g ( a x ) = f ( x ) ∗ h ( x ) = ∫ − ∞ + ∞ f ( t ) h ( x − t ) d t = ∫ − ∞ + ∞ f ( t ) g ( a × ( x − t ) ) d t \begin{aligned} f(x)*g(ax)&=f(x)*h(x) \\&=\int_{-\infty}^{+\infty}f(t)h(x-t)dt \\&=\int_{-\infty}^{+\infty}f(t)g(a\times(x-t))dt \tag{4} \end{aligned} f(x)g(ax)=f(x)h(x)=+f(t)h(xt)dt=+f(t)g(a×(xt))dt(4)
为了验证此结论,我们依然利用卷积的交换律:
(5) f ( x ) ∗ g ( a x ) = g ( a x ) ∗ f ( x ) = ∫ + ∞ − ∞ g ( a t ) f ( x − t ) d t \begin{aligned} f(x)*g(ax)&=g(ax)*f(x)\\ &=\int_{+\infty}^{-\infty}g(at)f(x-t)dt\\ \end{aligned} \tag{5} f(x)g(ax)=g(ax)f(x)=+g(at)f(xt)dt(5)
同样做变量的代换,令 s = x − t s=x-t s=xt,于是 d s = − d t ds=-dt ds=dt,对应的积分上下界也会交换,上式中的积分就变成
(6) f ( x ) ∗ g ( a x ) = ∫ + ∞ − ∞ g ( a × ( x − s ) ) f ( s ) d s \begin{aligned} f(x)*g(ax)&=\int_{+\infty}^{-\infty}g(a\times(x-s))f(s)ds \end{aligned} \tag{6} f(x)g(ax)=+g(a×(xs))f(s)ds(6)
( 6 ) (6) (6)式当中,我们能够看出,它与 ( 4 ) (4) (4)中的结果是相等的。因此自变量含有尺度变换的结论便得证。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值