AB Test的实质:假设检验,主要有以下几个步骤:
1、在实验开始前,找产品、项目经理等确认:实验需要验证的改动点(一次只能看一个!!!)
2、数据分析师设计需要去观测的核心指标,指标分为2类:
①绝对类指标(用得比较少 ,如:DAU平均停留时长)
②比率类指标(通过多个指标计算得到,如:点击率、转化率、复购率)
3、计算实验所需的最小样本量(trade off:n越大,实验结果越可信;但n过大,会对用户造成不良影响),每一个实验组所需的样本量:[用到了“大数定律”和“中心极限定律”]
α:犯第一类错误的概率,而1-α(没有犯第一类错误的概率)是置信水平。通常取0.05。
β:犯第二类错误的概率,而1-β是统计功效。通常取0.2。
样本标准差计算方式有所不同:
①当观测指标为绝对类指标: