如何让大语言模型更好地理解科学文献?

论文地址:https://arxiv.org/pdf/2408.15545

引言

科学文献的理解对于提取目标信息和获取洞察至关重要,这显著推动了科学发现。尽管大语言模型(LLMs)在自然语言处理方面取得了显著成功,但在科学文献理解方面仍面临挑战,主要由于缺乏科学知识和对特定科学任务的不熟悉。为了开发专门用于科学文献理解的LLM,我们提出了一种混合策略,结合持续预训练(CPT)和监督微调(SFT),以同时注入科学领域知识和增强特定任务的指令遵循能力。

1. 持续预训练(CPT)阶段

1.1 格式与语法校正

在从PDF文档中提取文本时,常常会引入许多格式和语法错误。为了解决这一问题,我们使用Llama3-8B-Instruct模型来校正这些错误。以下是一个校正前后的示例:

校正前的文本:

Highly p e n e t r a t i n g radiation, such as $\gamma$ -rays or fast electorns, deposits ener gy   
throughout the solid t a r g e t material. Gas production occurs w i t h i n the solid phase and must d i f f u s e to the surface to be observed.

校正后的文本:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值