POJ 2195 Going Home (最佳完美匹配, 最小费用最大流)

该博客介绍了如何利用KM算法和最小费用最大流的方法解决字符矩阵中m和H的最佳完美匹配问题,即找到使得每个m与不同H配对的最小总成本。题目涉及100x100的字符矩阵,配对成本由字符之间的哈密顿距离决定。博客提供了两种解题方法的详细代码实现,分别基于最佳完美匹配的KM算法和最小费用最大流的网络流模型。
摘要由CSDN通过智能技术生成
题目类型  最佳完美匹配, 最小费用最大流

题目意思
给出一个最多 100 * 100 的字符矩阵 其中有若干个m和相同数量的H, 现在要使每个m都与一个不同的H配对,问最少的花费是多少
一次配对的花费是配对的两个字符的哈密顿距离

解题方法
用km算法求最佳完美匹配(即花费最小的完美匹配) 每个m点和所有的H点连一条权值为原花费*(-1)的边 然后求一次权值和最大的完美匹配即可
用最小费用最大流的方法做就是新建一个源点s和一个汇点t, s到所有的m连一条容量为1, 费用为0的边,所有的H到t连一条容量为1费用为0的边, 每个m与H之间连一条容量为1费用为相应花费的边, 然后求一次最小费用最大流即可

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值