UVA 1220 Hali-Bula的晚会

题目描述:https://vjudge.net/problem/UVA-1220

判断一个图是否是树:一个图G如果是无回路的连通图,或者是n-1条边的连通图,那么G就是树。树上的DP类问题一般用深度优先遍历解决。

本题几乎就是树的最大独立集问题,不过多了一个要求:判断唯一性。设:
d(u,0)和f(u,0)表示以u为根的子树中,不选u点能得到的最大人数以及方案唯一性
(f(u,0)=1表示唯一,0表示不唯一)。
d(u,1)和f(u,1)表示以u为根的子树中,选u点能得到的最大人数以及方案唯一性。相应地,状态转移方程也有两套。
d(u,1)的计算:因为选了u,所以u的子结点都不能选,因此d(u,1) = sum{d(v,0) | v是u的子结点}。当且仅当所有f(v,0)=1时f(u,1)才是1。
d(u,0)的计算:因为u没有选,所以每个子结点v可选可不选,即d(u,0) = sum{ max(d(v,0) ,
d(v,1)) }。什么情况下方案是唯一的呢?首先,如果某个d(v,0)和d(v,1)相等,则不唯
一;其次,如果max取到的那个值对应的f=0,方案也不唯一(如d(v,0) > d(v,1)
且f(v,0)=0,则f(u,0)=0)。

#include<iostream>
#include<vector>
#include<map>
#include<string.h>
using namespace std;
#define maxn 200+10

vector<int> child[maxn];
map<string,int> man; 
int dp[maxn][3];
int f[maxn][3];
int n;

void initial()
{
    memset(f,0,sizeof(f));
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;i++)
        child[i].clear();
    man.clear();
}

void dfs(int u)
{

    int size=child[u].size();
    if(size==0)
    {
        dp[u][0]=0;
        dp[u][1]=1;
        return; 
    }

    for(int i=0;i<size;i++)
    {
        int v=child[u][i];
        dfs(v);     
        if(f[v][0])
            f[u][1]=1;
        dp[u][1]+=dp[v][0];

        int v0=dp[v][0];
        int v1=dp[v][1];
        if(v0==v1||(v0>v1&&f[v][0]==1)||(v1>v0&&f[v][1]==1))
            f[u][0]=1;
        dp[u][0]+=max(v0,v1);
    }
    dp[u][1]++;
}

int main()
{
    cin>>n;
    while(n!=0)
    {
        string s;
        cin>>s;
        int cnt=0;
        man[s]=++cnt;
        for(int i=0;i<n-1;i++)
        {
            string s1,s2;
            cin>>s1>>s2;
            if(!man[s1])
                man[s1]=++cnt;
            if(!man[s2])
                man[s2]=++cnt;
            child[man[s2]].push_back(man[s1]);
        }
        dfs(1);

        if(dp[1][1]>dp[1][0])
            printf("%d %s\n",dp[1][1],f[1][1]?"No":"Yes");
        else if(dp[1][1]<dp[1][0])
            printf("%d %s\n",dp[1][0],f[1][0]?"No":"Yes");
        else
            printf("%d No\n",dp[1][0]);
        initial();
        cin>>n;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值