DataWhale 大数据处理技术组队学习task4

五、分布式并行编程模型MapReduce

1. 概述

1.1 分布式并行编程

  • 背景:摩尔定律已经开始逐渐失效,提升数据处理计算能力刻不容缓。
  • 传统的程序开发与分布式并行编程
    • 传统的程序开发:以单指令、单数据流的方式顺序执行,虽然这种方式比较符合人类的思维习惯,但是,这种程序的性能受到单台机器性能的限制,可扩展性较差。
    • 分布式并行编程:分布式程序运行在大规模计算机集群上,集群中包括大量廉价服务器,可以并行执行大规模数据处理任务,从而获得海量的计算能力。

1.2 MapReduce模型简介

MapReduce将复杂的、运行于大规模集群上的并行计算过程高度抽象到了两个函数:MapReduce,这两个函数及其核心思想都源自函数式编程语言。

  • 设计理念:“计算向数据靠拢”,而不是“数据向计算靠拢"
    • 原因:数据需要大量的网络传输开销,尤其是在大规模数据环境下,这种开销尤为惊人,所以,移动计算要比移动数据更加经济
    • 措施:只要有可能,一个集群中的MapReduce框架就会将Map程序就近地在HDFS数据所在的节点运行,即将计算节点和存储节点放在一起运行,从而减少了节点间的数据移动开销。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hKEWra9S-1677247366243)(null)]

  • 架构:Master/Slave架构(一个Master和若干个Slave)

    • Master上运行JobTracker(JobTracker负责作业和任务的调度,监控它们的执行,并重新调度已经失败的任务)
    • Slave上运行 TaskTracker(TaskTracker负责执行由JobTracker指派的任务)
  • 在一个MapReduce的作业中必定会涉及到如下一些组件:

    • 客户端:提交MapReduce作业
    • yarn资源管理器:负责集群上计算资源的协调
    • yarn节点管理器:负责启动和监控集群中机器上的计算容器(container)
    • MapReduce的application master:负责协调运行MapReduce的作业
    • HDFS:分布式文件系统,负责与其他实体共享作业文件

1.3 Map和Reduce函数

  • 都是以<key, value>作为输入,按一定的映射规则转换成另一个或一批<key, value>进行输出。
函数输入输出说明
Map<k1,v1> 如:<行号,”a b c”>List(<k2,v2>) 如:<“a”,1>1、将小数据集进一步解析成一批<key,value>对,输入Map函数中进行处理 2、每一个输入的<k1,v1>会输出一批<k2,v2>。<k2,v2>是计算的中间结果
Reduce<k2,List(v2)> 如:<“a”,<1,1,1>><k3,v3> 如:<“a”,3>输入的中间结果<k2,List(v2)>中的List(v2)表示是一批属于同一个k2的value
  • map:一个map函数本质上是将一种操作进行进行映射,针对不同的对象进行同一种操作
  • reduce:将所得的中间结果进行混合

2. MapReduce的工作流程

2.1 工作流程概述

  • 大规模数据集的处理包括分布式存储分布式计算两个核心环节。
  • 谷歌公司用分布式文件系统GFS实现分布式数据存储,用MapReduce实现分布式计算,而Hadoop则使用分布式文件系统HDFS实现分布式数据存储,用Hadoop MapReduce实现分布式计算。
  • MapReduce核心思想:分而治之(与递归的思想不谋而合)
    • 即把一个大的数据集拆分成多个小数据块在多台机器上并行处理
      • **首先会被拆分成许多个Map任务在多台机器上并行执行,**每个Map任务通常运行在数据存储的节点上,这样,计算和数据就可以放在一起运行,不需要额外的数据传输开销。当Map任务结束后,会生成以<key,value>形式表示的许多中间结果。
      • 然后,这些中间结果会被分发到多个Reduce任务在多台机器上并行执行具有相同key<key,value>会被发送到同一个Reduce任务那里,Reduce任务会对中间结果进行汇总计算得到最后结果,并输出到分布式文件系统中。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kpWtGvmz-1677247112542)(null)]

  • 注意
    • 不同的Map任务之间不会进行通信,不同的Reduce任务之间也不会发生任何信息交换;用户不能显式地从一台机器向另一台继机器发送消息,所有的数据交换都是通过MapReduce框架自身去实现的。(通信只会在相同的map、reduce任务之间进行)
    • 在MapReduce的整个执行过程中,Map任务的输入文件、Reduce任务的处理结果都是保存在分布式文件系统中的,而Map任务处理得到的中间结果则保存在本地存储(如磁盘)中。

2.2 MapReduce的各个执行阶段

  1. MapReduce框架使用InputFormat模块做Map前的预处理,比如,验证输入的格式是否符合输入定义;然后,将输入文件切分为逻辑上的多个InputSplitInputSplit是MapReduce对文件进行处理和运算的输入单位,只是一个逻辑概念,每个InputSplit并没有对文件进行实际切割,只是记录了要处理的数据的位置和长度。
  2. 因为InputSplit是逻辑切分而非物理切分,所以,还需要通过RecordReader(RR)并根据InputSplit中的信息来处理InputSplit中的具体记录,加载数据并转换为适合Map任务读取的键值对,输入给Map任务。
  3. Map任务会根据用户自定义的映射规则,输出一系列的<key,value>作为中间结果。
  4. 为了让Reduce可以并行处理Map的结果,需要对Map的输出进行一定的分区、排序(Sort)、合并(Combine)和归并(Merge)等操作,得到<key,value-list>形式的中间结果,再交给对应的Reduce程序进行处理,这个过程称为Shuffle
  5. Reduce以一系列<key,value-list>中间结果作为输入,执行用户定义的逻辑,输出结果给OutputFormat模块。
  6. OutputFormat模块会验证输出目录是否已经存在,以及输出结果类型是否符合配置文件中的配置类型,如果都满足,就输出Reduce的结果到分布式文件系统。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Rpny3a5b-1677247111535)(null)]

2.3 Shuffle过程详解

2.3.1 Shuffle过程简介
  • 所谓Shuffle,是指针对Map输出结果进行分区、排序和合并等处理,并交给Reduce的过程。因此,Shuffle过程分为Map端的操作Reduce端的操作

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NH3Jox2B-1677247115541)(null)]

  1. Map端的Shuffle过程。Map的输出结果首先被写入缓存,当缓存满时,就启动溢写操作,把缓存中的数据写入磁盘文件,并清空缓存。当启动溢写操作时,首先需要把缓存中的数据进行分区,然后对每个分区的数据进行排序(Sort)和合并(Combine),之后再写入磁盘文件。每次溢写操作会生成一个新的磁盘文件,随着Map任务的执行,磁盘中就会生成多个溢写文件。在Map任务全部结束之前,这些溢写文件会被归并(Merge)成一个大的磁盘文件,然后,通知相应的Reduce任务来领取属于自己需要处理的数据。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nb9nxXWO-1677247115477)(null)]

  2. Reduce端的Shuffle过程。Reduce任务从Map端的不同Map机器领回属于自己需要处理的那部分数据,然后,对数据进行归并(Merge)后交给Reduce处理。

2.3.2 Map端得Shuffle过程
  1. 输入数据和执行Map任务
      Map任务的输入数据一般保存在分布式文件系统(如GFS或HDFS)的文件块中,这些文件块的格式是任意的,可以是文档,也可以是二进制格式的。Map任务接受<key,value>作为输入后,按一定的映射规则转换成一批<key,value>进行输出。
  2. 写入缓存
      每个Map任务都会被分配一个缓存,Map的输出结果不是立即写入磁盘,而是首先写入缓存。在缓存中积累一定数量的Map输出结果以后,再一次性批量写入磁盘,这样可以大大减少对磁盘I/O的影响。因为,磁盘包含机械部件,它是通过磁头移动和盘片的转动来寻址定位数据的,每次寻址的开销很大,如果每个Map输出结果都直接写入磁盘,会引入很多次寻址开销,而一次性批量写入,就只需要一次寻址,连续写入,大大降低了开销。需要注意的是,在写入缓存之前,keyvalue值都会被序列化成字节数组。
  3. 溢写(分区、排序和合并)
      提供给MapReduce的缓存的容量是有限的,默认大小是100MB。随着Map任务的执行,缓存中Map结果的数量会不断增加,很快就会占满整个缓存,这时,就必须启动溢写(Spill)操作,把缓存中的内容一次性写入磁盘,并清空缓存。溢写的过程通常是由另外一个单独的后台线程来完成的,不会影响Map结果往缓存写入。但是,为了保证Map结果能够不停地持续写入缓存,不受溢写过程的影响,就必须让缓存中一直有可用的空间,不能等到全部占满才启动溢写过程,所以,一般会设置一个溢写比例,如0.8,也就是说,当100MB大小的缓存被填满80MB数据时,就启动溢写过程,把已经写入的80MB数据写入磁盘,剩余20MB空间供Map结果继续写入。
      但是,在溢写到磁盘之前,缓存中的数据首先会被分区(Partition)。缓存中的数据是<key,value>形式的键值对,这些键值对最终需要交给不同的Reduce任务进行并行处理。MapReduce通过Partitioner接口对这些键值对进行分区,默认采用的分区方式是采用Hash函数对key进行哈希后,再用Reduce任务的数量进行取模,可以表示成hash(key) mod R。其中,R表示Reduce任务的数量,这样,就可以把Map输出结果均匀地分配给这RReduce任务去并行处理了。当然,MapReduce也允许用户通过重载Partitioner接口来自定义分区方式。
      对于每个分区内的所有键值对,后台线程会根据key对它们进行内存排序(Sort),排序是MapReduce的默认操作。排序结束后,还包含一个可选的合并(Combine)操作。如果用户事先没有定义Combiner函数,就不用进行合并操作。如果用户事先定义了Combiner函数,则这个时候会执行合并操作,从而减少需要溢写到磁盘的数据量。
      所谓**“合并”,是指将那些具有相同key<key,value>value加起来,比如,有两个键值对<"xmu",1><"xmu",1>,经过合并操作以后就可以得到一个键值对<"xmu",2>减少了键值对的数量。这里需要注意,Map端的这种合并操作,其实和Reduce的功能相似,但是,由于这个操作发生在Map端,所以,我们只能称之为“合并”,从而有别于Reduce。不过,并非所有场合都可以使用Combiner,因为,Combiner的输出是Reduce任务的输入,Combiner绝不能改变Reduce任务最终的计算结果,一般而言,累加、最大值等场景可以使用合并操作。
      经过
    分区、排序以及可能发生的合并操作之后,这些缓存中的键值对就可以被写入磁盘,并清空缓存。每次溢写操作都会在磁盘中生成一个新的溢写文件,写入溢写文件中的所有键值对,都是经过分区和排序**的。
  4. 文件归并
      每次溢写操作都会在磁盘中生成一个新的溢写文件,随着MapReduce任务的进行,磁盘中的溢写文件数量会越来越多。当然,如果Map输出结果很少,磁盘上只会存在一个溢写文件,但是,通常都会存在多个溢写文件。最终,在Map任务全部结束之前,系统会对所有溢写文件中的数据进行归并(Merge),生成一个大的溢写文件,这个大的溢写文件中的所有键值对,也是经过分区和排序的。
      所谓归并(Merge),是指对于具有相同key的键值对,会被归并成一个新的键值对。具体而言,对于若干个具有相同key的键值对<k1,v1><k1,v2>…,会被归并成一个新的键值对<k1,<V1,V2,...vn>>
      另外,进行文件归并时,如果磁盘中已经生成的溢写文件的数量超过参数min.num.spills.for.combine的值时(默认值是3,用户可以修改这个值)。那么,就可以再次运行Combiner,对数据进行合并操作,从而减少写入磁盘的数据量。但是,如果磁盘中只有一两个溢写文件时,执行合并操作就会“得不偿失”,因为执行合并操作本身也需要代价,因此,不会运行Combiner
2.3.3 Reduce端得Shuffle过程

Reduce端的Shuffle过程非常简单,只需要从Map端读取结果,然后执行归并操作,最后输送给Reduce任务进行处理,具体执行流程如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-26xF6RjG-1677247112446)(null)]

  1. “领取”数据
      Map端的Shuffle过程结束后,所有Map输出结果都保存在Map机器的本地磁盘上,Reduce任务需要把这些数据“领取”(Fetch)回来,存放到自己所在机器的本地磁盘上。因此,在每个Reduce任务真正开始之前,它大部分时间都在从Map端把属于自己处理那些分区的数据“领取”过来。
      每个Reduce任务会不断地通过RPC(Remote Procedure Call)向JobTracker询问Map任务是否已经完成;JobTracker监测到一个Map任务完成后,就会通知相关的Reduce任务来“领取”数据;一旦一个Reduce任务收到JobTracker通知,它就会到该Map任务所在机器上把属于自己处理的分区数据领取到本地磁盘中。一般系统中会存在多个Map机器,因此,Reduce任务会使用多个线程同时从多个Map机器领回数据。
  2. 归并数据
      从Map端领回的数据,会首先被存放在Reduce任务所在机器的缓存中,如果缓存被占满,就会像Map端一样被溢写到磁盘中。由于在Shuffle阶段,Reduce任务还没有真正开始执行,因此,这时可以把内存的大部分空间分配给Shuffle过程作为缓存。需要注意的是,系统中一般存在多个Map机器,所以,Reduce任务会从多个Map机器领回属于自己处理的那些分区的数据,因此,缓存中的数据是来自不同的Map机器的,一般会存在很多可以合并(Combine)的键值对。
      当溢写过程启动时,具有相同key的键值对会被归并(Merge),如果用户定义了Combiner,则归并后的数据还可以执行合并操作,减少写入磁盘的数据量。每个溢写过程结束后,都会在磁盘中生成一个溢写文件,因此,磁盘上会存在多个溢写文件。最终,当所有的Map端数据都已经被领回时,和Map端类似,多个溢写文件会被归并成一个大文件,归并的时候还会对键值对进行排序,从而使得最终大文件中的键值对都是有序的。当然,在数据很少的情形下,缓存就可以存储所有数据,就不需要把数据溢写到磁盘,而是直接在内存中执行归并操作,然后直接输出给Reduce任务。
      需要说明的是,把磁盘上的多个溢写文件归并成一个大文件,可能需要执行多轮归并操作。每轮归并操作可以归并的文件数量是由参数io.sort.factor的值来控制的(默认值是10,可以修改)。
      假设磁盘中生成了50个溢写文件,每轮可以归并10个溢写文件,则需要经过5轮归并,得到5个归并后的大文件。
  3. 把数据输入Reduce任务
      磁盘中经过多轮归并后得到的若干个大文件,不会继续归并成一个新的大文件,而是直接输入给Reduce任务,这样可以减少磁盘读写开销。由此,整个Shuffle过程顺利结束。接下来,Reduce任务会执行Reduce函数中定义的各种映射,输出最终结果,并保存到分布式文件系统中。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GXOK1cb5-1677247114510)(null)]

3. 以WordCount为例理解MapReduce过程

  1. 判断WordCount任务是否可以采用MapReduce实现。(满足前提条件:待处理的数据集可以分解成许多小的数据集,而且每一个小数据集都可以完全并行地进行处理,核心是并行处理)本例中,不同单词之间的频数不存在相关性,彼此独立,可以把不同的单词分发给不同的机器进行并行处理,因此,可以采用MapReduce来实现词频统计任务。

  2. 确定MapReduce程序的设计思路。本例中,把文件内容解析成许多个单词,然后把所有相同的单词聚集到一起最后,计算出每个单词出现的次数进行输出

  3. 确定MapReduce程序的执行过程。把一个大文件切分成许多个分片,每个分片输入给不同机器上的Map任务,并行执行完成“从文件中解析出所有单词”的任务。Map的输入采用Hadoop默认的<key, value>输入方式,即文件的行号作为key,文件的一行作为valueMap的输出以单词作为key,1作为value,即<单词,1>,表示单词出现了1次。

  4. Map阶段完成后,会输出一系列<单词,1>这种形式的中间结果,然后,Shuffle阶段会对这些中间结果进行排序、分区,得到<key, value-list>的形式(比如<hadoop,<1,1,1,1,1>>),分发给不同的Reduce任务。Reduce任务接收到所有分配给自己的中间结果(一系列键值对)以后,就开始执行汇总计算工作,计算得到每个单词的频数并把结果输出到分布式文件系统。

3.1 WordCount实现过程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6tMVGoqG-1677247113508)(null)]

3.2 简易版MapReduce工作流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GeqCbSSQ-1677247114491)(null)]

3.3 数据分片

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OUaPHK98-1677247116527)(null)]

MapReduce的工作流程:

  • Inputformat的作用:加载、读取HDFS中的文件,对输入进行格式验证;将大文件切分成许多分片split,但此切分仅是逻辑上的切分,即逻辑定义每个split的起点和长度,并非真正意义的物理切分。
  • record reader:记录阅读器,根据split的位置和长度,从HDFS中的各个块读取相关分片,读取成<k,v>的形式。

3.4 WordCount详细讲解

  1. 数据分片

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oTNdfyHo-1677247109441)(null)]

  2. split的map过程

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vk4PV0dY-1677247113493)(null)]

  3. Reduce过程

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sWmZEYj3-1677247112488)(null)]

  4. WordCount的Map过程

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NQ448ovL-1677247114457)(null)]

  5. WordCount的Reduce过程

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WURqNOf6-1677247115497)(null)]

  6. Shuffle过程

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-q4PfQDwE-1677247113472)(null)]

3.5 详细版MapReduce工作流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2qgiFUvC-1677247117518)(null)]

3.6 MapReduce的体系结构

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PmMf8Nw8-1677247114535)(null)]

  • Client(客户端)

    • 主要功能:负责提交作业,查看作业状态

    • 提交作业:用户编写的MapReduce程序通过Client提交到JobTracker端。

    • 查看作业状态:用户可通过Client提供的一些接口查看作业运行状态。

  • JobTracker(作业跟踪器)

    • 主要功能:负责资源监控、作业调度

    • 资源监控JobTracker监控所有TaskTrackerJob的健康状况,一旦发现节点失效(通信失败或节点故障),就将相应的任务转移到其他节点。

    • 作业调度JobTracker会跟踪任务的执行进度、资源使用量等信息,并将这些信息告诉任务调度器(TaskScheduler),而任务调度器会选择合适的(比较空闲)节点资源来执行任务。

  • TaskScheduler(任务调度器)

    • 执行具体的相关任务,一般接收JobTracker发送过来的命令。

    • 把一些自己的资源使用情况,以及任务的运行进度通过心跳的方式,也就是heartbeat发送给JobTracker

  • TaskTracker(任务跟踪器)

    • TaskTracker会周期性地通过“心跳”,将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时接收JobTracker发送过来的命令,并执行相应的操作(如启动新任务、杀死任务等)。

    • TaskTracker使用slot等量划分本节点上的资源量(CPU、内存等)。一个Task获取到一个slot后才有机会运行,而Hadoop调度器(TaskScheduler)的作用就是将各个TaskTracker上的空闲slot分配给Task使用。slot分为Map slotReduce slot两种,分别供MapTaskReduce Task使用。

4. 实验(之后统一完成)

参考自DataWhale学习资料

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值