【第三次作业】卷积神经网络

一、第一部分

1、视频学习心得

卷积神经网络基本机构有卷积、池化和全连接层,其中卷积是对两个实变函数的一种数学操作,有一维卷积、二维卷积等。

深度学习的三部曲:

  • 搭建神经网络

  • 找合适的损失函数

    衡量吻合度

  • 找合适的优化函数

池化:

最大值池化、平均值池化。

卷积神经网络结构:

  • AlexNet
  • ReLU
  • ZFNet

2、问题总结

如何选取合适的函数来过拟合;AlexNet的分层解析。

二、第二部分

● MNIST 数据集分类

  • 加载数据

    调用torchvision.datasets 即可把这些数据由远程下载到本地:

    input_size  = 28*28   # MNIST上的图像尺寸是 28x28
    output_size = 10      # 类别为 0 到 9 的数字,因此为十类
    
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=True, download=True,
            transform=transforms.Compose(
                [transforms.ToTensor(),
                 transforms.Normalize((0.1307,), (0.3081,))])),
        batch_size=64, shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=False, transform=transforms.Compose([
                 transforms.ToTensor(),
                 transforms.Normalize((0.1307,), (0.3081,))])),
        batch_size=1000, shuffle=True)
    

在这里插入图片描述

显示数据集中的部分图像:

plt.figure(figsize=(8, 5))
for i in range(20):
    plt.subplot(4, 5, i + 1)
    image, _ = train_loader.dataset.__getitem__(i)
    plt.imshow(image.squeeze().numpy(),'gray')
    plt.axis('off');

  • 创建网络

继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数init中。

定义训练和测试函数

# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item())) 
def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))                
  • 在小型全连接网络上训练

    n_hidden = 8 # number of hidden units
    
    model_fnn = FC2Layer(input_size, n_hidden, output_size)
    model_fnn.to(device)
    optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
    print('Number of parameters: {}'.format(get_n_params(model_fnn)))
    
    train(model_fnn)
    test(model_fnn)
    

在这里插入图片描述
正确率为86%。

  • 在卷积神经网络上训练

    n_features = 6 # number of feature maps
    
    model_cnn = CNN(input_size, n_features, output_size)
    model_cnn.to(device)
    optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
    print('Number of parameters: {}'.format(get_n_params(model_cnn)))
    
    train(model_cnn)
    test(model_cnn)
    

在这里插入图片描述

正确率95%。

CNN可以通过卷积和池化两种方式来更好的获取图像中的信息,所以正确率相较全神经网络高。

  • 打乱像素顺序再次在两个网络上训练与测试

    将图像中的像素打乱顺序,使卷积和池化难以发挥作用。然后重新定义训练和测试函数,对data进行打乱顺序的操作。

    # 对每个 batch 里的数据,打乱像素顺序的函数
    def perm_pixel(data, perm):
        # 转化为二维矩阵
        data_new = data.view(-1, 28*28)
        # 打乱像素顺序
        data_new = data_new[:, perm]
        # 恢复为原来4维的 tensor
        data_new = data_new.view(-1, 1, 28, 28)
        return data_new
    
    # 训练函数
    def train_perm(model, perm):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            # 像素打乱顺序
            data = perm_pixel(data, perm)
    
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % 100 == 0:
                print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
    
    # 测试函数
    def test_perm(model, perm):
        model.eval()
        test_loss = 0
        correct = 0
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
    
            # 像素打乱顺序
            data = perm_pixel(data, perm)
    
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.data.max(1, keepdim=True)[1]                                            
            correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
    
        test_loss /= len(test_loader.dataset)
        accuracy = 100. * correct / len(test_loader.dataset)
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            accuracy))
    

    测试结果:

    全神经网络

    正确率为89%,说明打乱顺序对全神经网络的性能没有影响。

    卷积神经网络

    正确率为80%,准确度下降较多,说明打乱顺序以后,这些像素间的关系将无法得到利用,卷积和池化便不能发挥作用。

● CIFAR10 数据集分类

定义网络,损失函数和优化器

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

训练网络

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

部分截图
在这里插入图片描述
取出8张照片

# 得到一组图像
images, labels = iter(testloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示图像的标签
for j in range(8):
    print(classes[labels[j]])

CNN识别结果

outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

# 展示预测的结果
for j in range(8):
    print(classes[predicted[j]])

在这里插入图片描述
有几个识别错误。

网络在整个数据集上的表现

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

在这里插入图片描述
有64%的准确度。

● 使用 VGG16 对 CIFAR10 分类

模型实现代码

cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
//将cfg放到外边
class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        #self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']  #可以放到函数外定义
        self.features = self._make_layers(cfg)
        #self.classifier = nn.Linear(2048, 10)  
        self.classifier = nn.Linear(512, 10)
        //nn.Linear(2048, 10)修改为nn.Linear(512, 10)
    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)
# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

初始化网络

# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

网络训练

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

部分截图
在这里插入图片描述

测试验证准确率

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100 * correct / total))

在这里插入图片描述
使用简化版VGG网络后,准确性得到显著提高


总结

卷积神经网络的神经元与一部分的其他单元有联系,而全神经网络的神经元与所有单元都有联系。卷积神经网络主要由卷积层、池化层和全连接层构成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值