二叉树-认识树及堆,堆的实现

本文详细介绍了树和二叉树的概念、基本术语、性质,包括树的表示方法(如孩子兄弟表示法),以及二叉树的特殊类型如完全二叉树、满二叉树和斜树。还重点讨论了堆数据结构,包括堆排序和小堆/大堆的实现,以及相关操作的代码示例。
摘要由CSDN通过智能技术生成

一、树的概念及结构

(一)树的概念

树是一种非线性的数据结构,是n(n≥0)个结点的有限集。当n=0时,称为空树。
在任意一颗非空树中应满足:

  • 有且仅有一个特殊的结点,称为根结点,根节点没有前驱结点。
  • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、 … Tm,其中每一个集合Ti(1 ≤i ≤ m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 因此,树是递归定义的。树是一种递归的数据结构。

f27e42db44a0598e9dc302bc85fd6dc4_u=169932365,2830737350&fm=253&fmt=auto&app=120&f=JPEG_w=700&h=400.webp
树作为一种逻辑结构,同时也是一种分层结构,具有以下两个特点:

  • 树的根结点没有前驱,除根结点外的所有结点有且只有一个前驱
  • 树中所有结点可以有零个或多个后继

注意:树形结构中,子树之间不能有交集,否则就不是树形结构。
** 一颗N个结点的数有N一1条边。**
** 树适合于表示具有层次结构的数据。**

(二)树的基本术语(无须记忆,了解即可)

image.png
节点的度: 一个节点含有的子树的个数称为该节点的度;如. 上图: A的为6
叶节点或终端节点:度为0的节点称为叶节点;如上图:B、C、H、1… 等节点为叶节点
非终端节点或分支节点:度不为0的节点;如上图:D、E、 F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点;如上图: B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度;如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
树的高度或深度:树中节点的最大层次;如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、1互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

(三)树的性质

树具有如下最基本的性质:

  1. 树中的结点数等于所有结点的度数之和加1.
  2. 度为m的树中第i层上至多有 m ( i − 1 ) m^{(i-1)} m(i1)个结点(i≥1)。
  3. 高度为h的m叉树至多有 ( m h − 1 ) / ( m − 1 ) (m^h-1)/(m-1) (mh1)/(m1)个结点。
  4. 具有n个结点的m叉树的最小高度为 [ l o g m ( n ( m − 1 ) + 1 ) ] [log_m(n(m-1)+1)] [logm(n(m1)+1)]

(四)树的表示

树结构相对线性表就比较复杂了要存储表示起来就比较麻烦了,既然保存值域, 也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。
我们这里就简单的了解其中最常用的孩子兄弟表示法
image.png

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
}

二、二叉树概念及结构

一棵二叉树是结点的一个有限集合,该集合:

1.或者为空
2.由一个根节点加上两棵别称为左子树和右子树的二叉树组成

image.png
从上图可以看出:

1.二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:
image.png

特殊的二叉树

1.满二叉树:

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2 k − 1 2^k-1 2k1,则它就是满二叉树。

2.完全二叉树:

完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每个结点都与深度为K的满二叉树中编号从1至n的结点一对应时称之为完全二叉树。要注意的是满二叉树是一种特殊的完全二叉树
image.png

3.斜树

顾名思义,斜树一定要是斜的,但是往哪斜还是有讲究的。所有的结点都只有左子树的二叉树叫左斜树。所有结点都只有右子树的二叉树叫右斜树。这两者统称为斜树。
image.png
斜树有很明显的特点,就是每一层都只有一个结点,结点的个数与二叉树的深度相同

有人会想,这也能叫树呀,与我们的线性表结构不是一样吗。对的,其实线性表结构就可以理解为是树的一种极其特殊的表现形式。

4.二叉排序树

左子树上所有结点的关键字均小于根结点的关键字;
右子树上的所有结点的关键字均大于根结点的关键字;
左子树和右子树又各是一颗二叉排序树。

5.平衡二叉树

树上任一结点的左子树和右子树的深度之差不超过1。

二叉树的性质

1.若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2 ( i − 1 ) 2^{(i-1)} 2(i1)个结点.
2.若规定根节点的层数为1,则深度为h的二二叉树的最大结点数 2 h − 1. 2^h - 1. 2h1.
3.对任何一棵二叉树,如果度为0其叶结点个数为 n 0 n_0 n0度为2的分支结点个数为 n 2 n_2 n2,则有 n 0 = n 2 + 1 n_0=n_2 + 1 n0=n2+1.
4.若规定根节点的层数为1,具有n个结点的满二叉树的深度 h = l o g 2 ( n + 1 ) h=log_2(n + 1) h=log2(n+1). (ps: l o g 2 ( n + 1 ) log_2(n + 1) log2(n+1)是log以2为底,n+1为对数).
5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1.若i>0,i位置节点的双亲序号: (i-1)/2; i=0, i为根节点编号,无双亲节点.
2.若2i+1<n,左孩子序号: 2i+1, 2i+1≥n否则无左孩子.
3.若2i+2<n,右孩子序号: 2i+2,2i+2≥n否则无右孩子.

三、堆

1.完全二叉树
2.大堆:树任何一个父亲都大于或等于孩子
小堆:树任何一个父亲都小于或等于孩子
image.png
应用:

  1. 堆排序–O(N*logN)
  2. topk
  3. 优先级队列

堆的实现-顺序存储结构

顺序存储结构和链式结构。
这里我们使用顺序存储结构,即使用数组来实现。

image.png

void AdjustUp(HPDataType* a, int child)//向上调整
{
	int parent = (child - 1) / 2;
	while (child>0)//走到根终止
	{
		if (a[child] < a[parent])			//小堆
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else {
			break;
		}
	}
}

void HeapPush(HP* php, HPDataType x) 
{
	assert(php);
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4: php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a,newCapacity*sizeof(HPDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newCapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a,php->size-1);
}

image.png

void AdjustDown(HPDataType* a, int size, int parent)//向下调整   小堆
{
	int child = parent * 2 + 1;
	while ( child< size)
	{
		if (child + 1 < size && a[child + 1] < a[child])//注意小堆和小的比较,大堆和大的比较
		{
			++child;
		}
									// 大堆,当a[child]>a[parent]时,交换
		if (a[child] < a[parent])  //  小堆,当a[child]<a[parent]时,交换   
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapPop(HP* php)//删除根结点元素,向下调整算法来调整
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->size]);
	php->size--;
	AdjustDown(php->a,php->size,0);
}

小堆的实现-代码

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>

typedef int HPDataType;
typedef struct Heap//堆的实现使用数组
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

void AdjustUp(HPDataType* a, int child);//向上调整
void AdjustDown(HPDataType* a, int size, int parent);//向下调整   小堆

void HeapInit(HP* php);

void HeapDestory(HP* php);

void HeapPush(HP* php, HPDataType x);//本代码以小堆为示范

void HeapPop(HP* php);

HPDataType HeapTop(HP* php);

bool HeapEmpty(HP* php);

int HeapSize(HP* php);

#define _CRT_SECURE_NO_WARNINGS

#include "Heap.h"

void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

void HeapDestory(HP* php)
{
	assert(php);
	free(php);
	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void AdjustUp(HPDataType* a, int child)//向上调整
{
	int parent = (child - 1) / 2;
	while (child>0)//走到根终止
	{
		if (a[child] < a[parent])			//小堆
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else {
			break;
		}
	}
}

void HeapPush(HP* php, HPDataType x) 
{
	assert(php);
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4: php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a,newCapacity*sizeof(HPDataType));
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		php->a = tmp;
		php->capacity = newCapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a,php->size-1);
}

void AdjustDown(HPDataType* a, int size, int parent)//向下调整   小堆
{
	int child = parent * 2 + 1;
	while ( child< size)
	{
		if (child + 1 < size && a[child + 1] < a[child])//注意小堆和小的比较,大堆和大的比较
		{
			++child;
		}
									// 大堆,当a[child]>a[parent]时,交换
		if (a[child] < a[parent])  //  小堆,当a[child]<a[parent]时,交换   
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapPop(HP* php)//删除根结点元素,向下调整算法来调整
{
	assert(php);
	assert(!HeapEmpty(php));
	swap(&php->a[0], &php->a[php->size]);
	php->size--;
	AdjustDown(php->a,php->size,0);
}

HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size==0;
}

int HeapSize(HP* php)
{
	assert(php);
	return php->size;
}

#define _CRT_SECURE_NO_WARNINGS

#include "Heap.h"

void test1()
{
	HP hp;
	HeapInit(&hp);
	int a[] = { 65,100,70,32,50,60 };
	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		HeapPush(&hp, a[i]);
	}
	HeapDestory(&hp);
}

void test2()
{
	HP hp;
	HeapInit(&hp);
	int a[] = { 65,100,70,32,50,60 };
	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		HeapPush(&hp, a[i]);
	}

	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		printf("%d\n",top);
		HeapPop(&hp);
	}
//	HeapPop(&hp);

	HeapDestory(&hp);
}

void test3()
{
	HP hp;
	HeapInit(&hp);
	int a[] = { 65,100,70,32,50,60 };
	for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
	{
		HeapPush(&hp, a[i]);
	}

	// 10:42继续
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		printf("%d\n", top);
		HeapPop(&hp);
	}
}

int main()
{
	//test1();
	test2();
	return 0;
}
  • 17
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值