- 博客(2)
- 收藏
- 关注
原创 什么是小样本元学习?
整个训练过程可分为元训练和元测试两个阶段,在元训练阶段,通过组合不同的训练集构建不同的元任务,使得模型学习独立于任务的泛化能力;在元测试阶段,模型不需要重新训练或仅需少量迭代次数即可学习新任务,最终实现“学会学习”。在训练过程中,模型通过支持集中的样本进行学习,然后在查询集中进行测试和评估。
2024-05-29 10:59:30 457 1
原创 无卷积!基于Transformer的视频理解网络的基本概念和使用场景
TimeSformer是一种基于Transformer架构的视频理解网络,它是用于处理视频数据的深度学习模型。总之,TimeSformer是一种强大的视频理解模型,可用于多种视频处理任务,其优势在于能够捕捉时间序列数据中的全局关系,适用于广泛的应用领域,从视频分析到生成。:TimeSformer通常包括多头注意力机制,允许模型同时关注不同的时间和空间位置,从而更好地捕捉视频中的复杂关系。:为了使模型能够处理序列数据,TimeSformer需要引入位置编码,以将序列中的不同位置信息传递给模型。
2023-09-13 19:29:25 283 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人