自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 什么是小样本元学习?

整个训练过程可分为元训练和元测试两个阶段,在元训练阶段,通过组合不同的训练集构建不同的元任务,使得模型学习独立于任务的泛化能力;在元测试阶段,模型不需要重新训练或仅需少量迭代次数即可学习新任务,最终实现“学会学习”。在训练过程中,模型通过支持集中的样本进行学习,然后在查询集中进行测试和评估。

2024-05-29 10:59:30 457 1

原创 无卷积!基于Transformer的视频理解网络的基本概念和使用场景

TimeSformer是一种基于Transformer架构的视频理解网络,它是用于处理视频数据的深度学习模型。总之,TimeSformer是一种强大的视频理解模型,可用于多种视频处理任务,其优势在于能够捕捉时间序列数据中的全局关系,适用于广泛的应用领域,从视频分析到生成。:TimeSformer通常包括多头注意力机制,允许模型同时关注不同的时间和空间位置,从而更好地捕捉视频中的复杂关系。:为了使模型能够处理序列数据,TimeSformer需要引入位置编码,以将序列中的不同位置信息传递给模型。

2023-09-13 19:29:25 283 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除