- 博客(46)
- 收藏
- 关注
翻译 论文阅读训练(14)
《Local Relation Networks for Image Recognition》(CVPR2019)图像识别的局部关系网络作者:胡瀚等摘要卷积层是CV中主要的特征提取工具,然而卷积上的空间聚合是利用固定卷积的基础模板匹配过程,对于建模不同空间分布的视觉元素是非常低效的。这篇文章提出一个新的图像特征提取工具,称为局部关联层(local relation layer),它...
2019-07-08 14:14:40 632
翻译 论文阅读训练(13)
《Pixel-Adaptive Convolutional Neural Networks》(2019)作者:UMass Amherst NVIDIA摘要卷积是CNN的基础组成block,被广泛使用的主要原因是它们的权重是空间共享的,也是最主要的限制,是使得卷积是内容无关的。此篇文章提出一个像素自适应的卷积操作,简称(PAC),对标准卷积的简单有效修改,其中滤波器权重乘以空间变化的内...
2019-07-04 11:46:55 988
翻译 论文阅读练习(12)
《3D human pose estimation in video with temporal convolutions and semi-supervised training》(2018)摘要此工作中构建了视频 的3Dpose,可以有效的用一个基于带洞时序卷积的全卷积模型在2D关键点上有效估计3Dpose。同时引进back-projection,一个简单有效的半监督训练方法,不用标签...
2019-07-01 11:56:06 627
翻译 论文阅读训练(11)
低分辨率转高分辨率视频的算法TecoGAN——时序一致GAN《Temporally Coherent GANs for Video Super-Resolution (TecoGAN)》摘要对抗训练在单幅图像高分辨率上已经很成功,可以恢复真实的很好的细节结果。目前最先进的视频超分辨率方法仍然倾向于更简单的规范,例如L2而不是对抗性损失函数。直接用矢量范数作为损失函数的平均性质很容易导致...
2019-06-24 16:05:14 725 2
原创 yolo系列
参考资料:https://blog.csdn.net/guleileo/article/details/80581858一、yolov1核心思想:输入整张图,直接在输出层回归bounding box的位置和类别概率。摘要此篇文章提出一种新的物体检测方法yolo,对于先前检测工作的分类器重新利用。把目标检测看作一个回归问题得到bounding box的空间位置和相关分类的概率。单个网...
2019-06-18 17:30:13 5162
翻译 Deeplab系列再理解
一、Deeplab v1《Semantic image segmentation with deep convolutional nets and fully connected CRFs》(ICLR2015)摘要深度卷积网络(DCNNs)在high-level视觉任务中表现很好,例图像分类、目标检测等。语义图像分割汇集DCNNs和概率图模型的方法进行逐像素分类处理。此文章验证了DCNNs...
2019-06-12 15:35:04 2760
翻译 论文阅读练习(9)
《Improved Training of Wasserstein GANs》(2017)作者:摘要生成对抗模型是一个很强的生成模型,但是训练不稳定。最新提出的沃恩斯坦GAN(Wasserstein GAN)提高了GAN的稳定训练,但是有时候仍会出现差的例子或发散。发现这些问题通常由于在WGAN中权重衰减的使用在判别器上加强了李普希兹约束(Lipschitz constraint)...
2019-06-11 11:39:35 391
翻译 论文阅读练习(8)
Mesh R-CNN(FRIA,2019)摘要目前在2D上系统可以精确检测目标在真实图像中。然而,2D上的预测忽略了3D的结构。当前,3D形状预测多数集中于合成benchmarks和单独目标上。此篇文章整合了这两个方面的优点,提出一个系统,在真实图片上检测目标,并且给每一个检测到的目标一个三角网格,显示其完整的3D形状。这个系统称为Mesh R-CNN,加强版Mask R-CNN,增加一个...
2019-06-10 13:21:14 325
翻译 论文阅读练习(7)
《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》(ICML2019)重新考虑卷积网络的模型尺度作者:Mingxing Tan Quoc V. Le(谷歌大脑)摘要:卷积网络通常在固定预算资源上开发,如果有更多资源可依赖就可以获得更好的精确度。此篇文章中系统研究了模型尺度并且确认平...
2019-06-06 09:46:14 361
原创 论文阅读(6)
LightTrack-京东数字科技LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking作者:摘要此篇文章中提出新的有效的轻便网络,称为LightTrack,用于在线human pose tracking。提出的框架对自上而下的posetracking通用,快于现存的线上线下方法。单人姿势跟...
2019-05-20 09:12:04 528
转载 getattr***os.listdir(path)****argsort()
转载:https://www.runoob.com/python/python-func-getattr.html(1)getattr返回一个对象属性值getattr(object,name[,default])object——对象name——字符串,对象属性default——默认返回值,若不提供此参数,当name没有对应属性时,就会报错(2)os.listdi...
2019-05-15 16:02:32 172
转载 os.mkdir()和os.mkdirs()的区别和用法
os.mkdirs()创建文件夹到“123”转载:https://blog.csdn.net/gqixf/article/details/80180640path_01='Test\\path_01\\path_02\\path_03'os.mkdir()创建路径中的最后一级目录,即:只创建path_03目录,而如果之前的目录不存在并且也需要创建的话,就会报错。os...
2019-05-13 14:32:50 11643
转载 windows下编译tensorflow Faster RCNN的lib/Makefile
https://blog.csdn.net/zm147451753/article/details/88218619解决:“nms/gpu_nms.cpp(1616): error C2664: “void _nms(int *,int *,const float *,int,int,float,int)”: 无法将参数 1 从“__pyx_t_5numpy_int32_t *”转换为“i...
2019-05-13 14:17:21 817 2
原创 np.clip()****np.stack()
1、 np.clip(x, min, max)——将x内所有的数变为(min,max)间的数,即小于min的设为min,大于max的设为max例:2、np.stack()——在列表基础上增加一个轴,将一维变为二维...
2019-05-09 08:22:07 267
翻译 论文阅读练习(5)
Auto-DeepLab——使用改进的神经架构搜索(NAS)技术自动搜索图像语义分割Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation特点:计算量小,精度好问题:语义分割必须在高分辨率图像上运行,需要:更松弛、通用的搜索空间来捕捉更高分辨率导致的架构变体;更高效的...
2019-05-07 09:32:29 265
原创 论文阅读练习(4)
Box-driven Class-wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation(CVPR2019)【弱监督语义分割的盒驱动分类区域掩模和速率引导损失】作者:摘要语义分割从采用深度FCN已经实现了很大的进步。但是,基于模型的FCN的表现严重依...
2019-04-29 11:06:07 947 1
原创 python np.unravel_index(indices, dims, order)
np.unravel_index(indices, dims, order)的作用:下标从0开始返回7行6列矩阵中的第22个、第41个、第37个元素的下标(例:22 = 3*6+4,故下标为(3,4));下标从0开始默认是按行主索引,即order=‘C’;当order=‘F’时,按列主索引按行索引,第5个元素下标为(1,2);按列索引,第5个元素下标为(2,1...
2019-04-28 17:07:22 1847
原创 python 深拷贝和浅拷贝
import copycopy.copy()——浅拷贝,不改变列表第一层内容,但会改变第二层及以上的内容copy.deepcopy(原列表)——深拷贝,第一层及以上都不会改变原列表****************************************************************************************************...
2019-04-28 16:17:19 163
原创 论文阅读练习(3)
Spatial-Temporal Relation Networks for Mulit-Object Tracking(25.Apr.2019)作者:Jiarui Xu13∗ , Yue Cao23, Zheng Zhang3 , Han Hu31Hong Kong University of Science and Technology2School of Software, Ts...
2019-04-28 14:02:59 393
原创 论文阅读训练(2)
Detect-and-Track: Efficient Pose Estimation in Videos(2018.may.2)作者:code:https://rohitgirdhar.github.io/DetectAndTrack摘要这篇文章处理复杂、多人视频的人体关键点估计和跟踪的问题。提出一个轻便但高效的方法,建立在最新的人体检测和视频理解方法上。此方法有两个操作阶段:在...
2019-04-26 15:51:26 378
原创 np.min和np.concatenate
np.min——axis=1,取每行最小;axis=0,取每列最小np.concatenate——axis=1,按行拼,增加列数;axis=0,按列拼,增加行数
2019-04-25 14:12:39 669
原创 论文阅读练习(1)
The iterative convolution-thresholding method(ICTM) for image segmentation(24.Apr.2019)论文地址:https://arxiv.org/pdf/1904.10917.pdf作者:Dong Wang and Xiao-Ping Wang摘要这篇文章中提出一个新的迭代卷积阈值分割方法(ICTM),适用于...
2019-04-25 09:53:33 608
原创 np.vstack/np.hstack/np.newaxis/np.transpose
(1)np.hstack——水平平铺(2)np.vstack——垂直堆叠(3)np.newaxis——增加一个轴(4)np.transepose——转换轴,不是改变数值a是三维2行2列经过a.transpose((1,0,2)),a变为2维3行2列【transpose改变轴】...
2019-04-24 17:57:19 790
转载 python——Contiguous用法
x.is_contiguous()——判断tensor是否连续x.contiguous()——把tensor变成在内存中连续分布的形式需要变成连续分布的情况:contiguous:view只能用在contiguous的variable上。如果在view之前用了transpose, permute等,需要用contiguous()来返回一个contiguous copy。参考资料:h...
2019-04-18 17:47:01 12910
原创 python3产生随机数
(1)random.randint(a,b)——产生(a,b)区间内一个任意整数(2)np.random.randn(n)——产生n个随机小数(3)random.random()——随机产生一个0-1间的小数
2019-04-15 17:27:28 2715
原创 os.path.splitext()、s.split()、os.path.split()、os.path.join()作用
import os os.path.splitext('hellow.png') 输出:('hellow', '.png') 应用:分开文件路径(path)和文件扩展名(ext)***********************************************************...
2019-04-11 10:20:58 658
原创 记录Windows运行github code的小坑
打开cmd,以管理员身份运行,cd到你想存放代码的位置然后打开github,利用git clone+code地址下载直接下载.zip会出现错误
2019-04-11 09:15:12 299
原创 Windows10下尝试flownet2踩的所有坑
盯着电脑,竟不知从何说起,欲哭无泪~~~~~开始搭flownet的环境时,装好CUDA9.0和cudnn7.1,嚓,没有VS又装了VS2017,环境都配好后,错误,不识别nvcc.exe,嚓,重新安装cuda(因为VS必须安装在前,cuda在后,what??为什么是这么个顺序???)卸载CUDA9.0,重新安装,时间好长,我已忘记当时是什么错误,总之全都是错,闹心~~~~请教搭成功...
2019-04-10 16:18:41 2919 4
原创 windows10下执行setup.py文件采小坑
运行setup.py文件出现UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd3 in position 0: invalid continuation byte问题:解决办法:打开cpp_extension.py文件(出错地方)修改:...
2019-04-10 14:46:36 2948
转载 VS2017编程工具安装
安装VS2017心得:环境配置体会:感觉自己有点二吧,弄了好长时间每次都说找不到VS2017的路径,我就邪了门了,明明添加好了,然鹅是自己蠢,没有分清系统变量和用户变量,结果添加VS2017环境变量时弄反了,so才一错再错,不了解电脑组成似乎很伤神啊。。。。。。小白学习有待提高!!!系统环境变量,对所有用户起作用;用户环境变量只对当前用户起作用。windows10下VS201...
2019-03-29 10:05:47 602
原创 attention机制总结
一、背景视觉注意力机制是人脑特有的一种对信号处理的机制,人类视觉通过观察全局图像,选取一些局部重点关注区域,然后对这些区域投入更多注意力来获取更多的细节信息,抑制其他无用信息。二、基本思想Attention mechanism的本质是模仿人类视觉注意力机制,学习出一个对图像特征的权重分布,再把这个权重分布施加在原来的特征上,为后面任务如图像分类、图像识别等提供不同的特征影响,使得任务主...
2019-03-28 13:32:21 19373 4
原创 目标函数(损失函数,代价函数)
深度网络中的目标函数通过样本的预测结果与真实标记产生的误差反向传播指导网络参数学习与表示学习。为防止模型过拟合或达到其他训练目标(如希望得到稀疏解),正则项通常作为对参数的约束也会加入目标函数中一起指导模型训练。一、分类任务目标函数(1)普通分类函数交叉熵损失函数合页损失函数坡道损失函数——非凸损失函数,也常被称为“鲁棒损失函数”特点:抗噪这类损失函数的共同特点是...
2019-01-06 11:47:17 3735
原创 网络参数初始化
参考:《解析深度学习——卷积神经网络原理与视觉实践》网址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf实际应用中,随机参数服从高斯分布或均匀分布一、Xaiver参数初始化方法和He参数初始化方法(1)Xaiver参数初始化方法随机初始化+方差大小的规范化, n指输入神经元个数n_in,也可以指定为(n_in+n_out)/2...
2019-01-06 09:08:39 1285
原创 激活函数
参考:《解析深度学习——卷积神经网络原理与视觉实践》网址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf一、Sigmoid函数缺点:大于 5(或小于 −5)部分的梯度接近 0,这会导致在误差反向传播过程中导数处于该区域的误差很难甚至无法传递至前层,进而导致整个网络无法正常训练;Sigmoid型激活函数值域的均值并非为 0 而是全为...
2019-01-06 09:08:23 2392
原创 卷积神经网络的压缩
参考:《解析深度学习——卷积神经网络原理与视觉实践》网址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf一、模型压缩原因巨大的存储代价以及计算开销,严重制约了深度网络在移动端等小型设备上的应用;模型内部参数存在着巨大的冗余。二、据压缩过程对模型结构破坏程度进行模型压缩技术分类前端压缩:指不改变原网络结构的压缩技术,主要包括知识...
2019-01-05 08:38:57 1718
原创 数据扩充和数据预处理
参考:《解析深度学习——卷积神经网络原理与视觉实践》网址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf 数据扩充有效的数据扩充不仅能扩充训练样本数...
2019-01-05 08:38:33 7976
原创 语义分割深度学习算法要点
参考:AI研习社微信公众号语义分割难点:将各个像素点分类到某一实例,再将各个实例(分类结果)与实体(人、道路等)一一对应。 出现在真实的理解图像或视频的动作的挑战:关键点检测、动作识别、视频字幕、视觉问题回答等。 常用数据集:PASCAL VOC——train/val 11k张;test 10张;用平均交并比(mIoU)评估图像分割模型的性能PASCAL-Context——tr...
2019-01-04 09:22:57 1266
转载 语义分割综述翻译 《A Review on Deep Learning Techniques Applied to Semantic Segmentation》
参考地址:http://www.cnblogs.com/Jie-Liang/archive/2017/06/29/6902375.html文章:https://arxiv.org/pdf/1704.06857.pdf1、迁移学习——从之前训练好的网络开始继续训练,然后在训练过程中微调模型权重值。好处:避免大量计算,迁移特征比随机初始化训练的特征要好。方法:1、使用现有的网络架构或网络组...
2019-01-04 09:21:57 2558
原创 经典网络结构
参考:《解析深度学习——卷积神经网络原理与视觉实践》网址:http://lamda.nju.edu.cn/weixs/book/CNN_book.pdf一、VGG特点:(1)使用小卷积核和“保持输入大小"等技巧,目的在增加网络深度(复杂度)时各层输入大小随深度增加而不极具减小。(2)通道数也逐渐在增加。二、NIN特点:(1)NIN采用了复杂度更高的多层感知机作为层间...
2019-01-04 09:21:16 819
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人