一、问题分析
问题:一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上n级台阶总共有多少种跳法。
分析:
1、当n=1时,青蛙只需跳一次就可以跳上一级台阶
2、当n=2时,青蛙可以跳两次一个台阶或一次两个台阶
3、当n=3时,青蛙可以跳两次一个台阶或一次两个台阶
4、当n=4时,青蛙可以跳三次一个台阶或一次两个台阶一次一个台阶;或一次一个台阶一次两个台阶
5、当n=5时,青蛙可以有8种跳法,如图
根据这几种情况可以得到:
n | 跳法 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 5 |
5 | 8 |
因为青蛙每次起跳可以跳一或两级台阶,所以我们可以将青蛙每一次起跳后的位置看作新的起点,以n=5时青蛙第一次起跳为例:
我们可以看出,青蛙起跳一次跳上一或两级台阶,剩下三或四级台阶,所以青蛙在台阶数量为5时的跳法数量=台阶数量为3的跳法数量+台阶数量为4的跳法数量,以此类推,每次起跳后的终点都看作是新的起点,就可以得到台阶数为n时的跳法总数量。
二、代码实现
通过上面的分析不难发现,这个问题和斐波那契数列非常相似,可以通过递归完成这个问题
//青蛙跳台阶
#include<stdio.h>
int func(int n)
{
if ( n<=2 )
{
return n;
}
else
{
return (func(n - 1) + func(n - 2));
}
}
int main()
{
int n;
printf("请输入台阶数量:");
scanf("%d", &n);
printf("%d", func(n));
return 0;
}