如今,大模型技术就像一把神奇的钥匙,为产品开发打开了新世界的大门。无论是个人开发者想要借助这项技术来提升自己的技能和打造酷炫的产品,还是企业团队希望通过它在商业战场上取得竞争优势,都得学会运用大模型进行产品的全流程开发。这篇文章讲介绍个人开发者和组织级别的大语言模型(LLM)产品开发流程参考。
一、个人开发者的大语言模型(LLM)产品的开发流程参考
1. 准备工作
- 规划项目目标与核心功能
- 进行技术调研,确认技术栈
- 大模型
- 向量数据库
- 后端框架
- 前端框架
2. 构建知识库索引
- 收集数据
- 数据存入知识库
- 加载数据
- 读取数据
- 文本分割
- 文本嵌入
- 存入向量数据库
3. 定制大模型
- 创建大模型API密钥
- 实现大模型对话互动
- 通过提示工程优化大模型
- 通过知识库实现定制化问答
- 添加记忆,实现历史对话消息记录
- 利用Agent,实现更多定制化功能
[]
4. 用户交互界面开发
- 设计用户交互界面
- 利用Streamlit、React等前端框架搭建用户交互界面
5. 测试与部署上线
- 进行产品测试
- 部署产品到本地服务器或云服务器
- 检查用户可访问性
6. 监控结果
- 跟踪用户参与度并收集数据
- 根据数据结果和反馈,进行迭代和改进
二、组织/商用级别的大语言模型(LLM)产品开发流程参考
1. 准备工作
- 与选择的大模型提供商(比如OpenAI、百度等)沟通商议,或独立制定出产品目标
- 收集大模型训练过程所需的资源和数据
- 考虑数据局限性和隐私问题
- 确定关键利益相关者:CEO、CTO、产品经理、数据工程师、法律团队等
2. 定制大模型
- 与大模型提供商沟通商议,选择合适的语言模型
- 定义从输入到输出的用户使用流程
- 策划和准备数据,确保数据安全和隐私
- 通过提示工程、增强索引生成等方式,进一步定制大模型
- 细化模型响应并评估性能
3. 模型部署与集成
- 确定模型部署方法:API、SDK或云服务器
- 将大模型集成到平台中
- 如果使用第三方平台,比如亚⻢逊SageMaker等,需要确保兼容性
- 在发布前进行全面的
4. 监控结果
- 跟踪用户参与度并收集反馈
- 分析大模型如何影响业务 KPI
- 根据反馈和结果,进行迭代和改进
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓