AI Agent现状:为何企业落地AI应用这么难

本文旨在探讨一个关键问题:为何在企业AI应用场景中,大模型应用在用户眼中显得乏善可陈,以至于未能激发出足够的实施意愿。简要来说,当前大多数文本相关应用所提供的智能增值不足,用户需要至少100次以96%准确率进行的LLM调用,或者是具备领域知识的工作流/专家知识才能满足需求。

1. 沟通的启示:与“陌生人”的交流

为了更好地理解这一问题,我们可以借鉴人与陌生人之间的沟通方式,这与用户与智能体(Agent)的互动存在相似之处。

当我们与陌生人进行沟通时,若能获得良好的交流体验,往往愿意在未来继续沟通。这种情况可以归纳为以下几种:

  • 情绪价值:对方提供了良好的情感交流,尽管这可能并非出于刻意。

  • 信息传递:对方提供了必要的信息,满足了自己的需求。

  • 领域专业知识:对方是一位专家,通过其经验解决了特定问题,或教会了自己解决思路。

  • 灵活应变:对方虽然不是专家,但思维敏捷,能根据对话内容灵活调整思路,提供创新的解决方案。

在以上情况中,情绪价值并不是企业应用场景的核心目标,而信息传递可以视为智能搜索的范畴。因此,剩下的两点可以从技术实现的角度进行分析:

  • 经验与工作流:对方具备与用户面临的问题相匹配的经验或工作流,能大概率解决用户的疑虑。

  • 非实时创新:对方的解决方案并非即时产生,而是基于以往经验的组合和调整,应用这些工作流的成本并不复杂。

简而言之,用户所需的核心价值在于对方之前已经持有的工作流,这些工作流可以有效地解决当前问题,而无需复杂的推理过程。

目前的智能检索便是一个简单的例子,通过一次请求,LLM和其他模型并行处理大量信息,过滤并交付结果。在需要多步推理和决策的场景中,AI能够基于现状探索多种方案,并选择出最佳方案呈现给用户。

类似于AI下棋,AI会基于当前局面探索未来的可能性,并选择相对优越的行动方案。尽管AI未必存储当前局面的最佳工作流,但通过大量的探索,它能够提供相对合理的方案。

在问题解决方面,Agent也能通过内部尝试各种方案,最终给出一个较高可靠性的结果。此时,Agent需要进行大量的知识型工作,包括推理与信息处理。

总之,可以归结为以下两点:

  1. 预置专家知识的工作流,直接调用即可有效解决问题。

  2. 通过大量计算(知识工作)为当前问题提供优越的解决方案。

2. 中基层管理者的信任障碍

在推进AI应用的过程中,中基层管理者往往是某一领域的业务尖兵,他们凭借丰富的经验和教训,在决策中更倾向于依赖自身的判断,而对AI的信任度较低。这种现象使得他们在接受新技术时显得格外谨慎,甚至产生抵触情绪。

这一信任障碍在企业中常常成为推动AI落地的障碍。中基层管理者不仅对AI的潜力持怀疑态度,而且在面对变化时,往往难以适应。这使得企业在推进AI应用时,需要付出额外的努力来改变他们的看法,克服这些心理障碍。

3. 专家知识的提取

从解决问题的直接角度来看,提取专家知识或工作流是实现目标的最直接方法。许多专家知识的解决方案在执行时并不需要高复杂度的大模型推理。独立求解一个问题较为困难,但“抄答案”的思路却相对容易。

尽管许多人认识到提取专家知识的重要性,但现实却很骨感。当前,“专家知识提取过程”的高成本已成为共识。

造成这一现象的主要原因包括:

  • 专家的意愿:许多领域专家并不愿意真心传授知识,存在“教会徒弟饿死师傅”的顾虑。

  • 传授成本:领域专家往往不擅长知识传授,或在与知识工作流构建者之间存在认知差异,导致沟通成本高。此外,专家的时间往往有限,且成本较高。

  • 知识输出形式:专家的输出形式往往不是文字或可量化的,这使得建模与学习变得困难。例如,涉及动作、绘画、气味等模糊感知的知识更难以提取。

  • 新流程构建:领域专家仅能传授已有流程,而如何依托新方案构建合适的新流程需要跨界能力,增加了人力成本。

  • 技术局限:当前技术尚未能满足原有流程的需求,尤其是在重新设计流程时,尚未出现有效的解决方案。

综上所述,“将领域专家的知识从其大脑中提取并固化为可执行的工作流”依然是一项难以自动化的任务,且难以在低成本水平上实现规模扩展。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值