站在终点回望,你会发现每个危机都是新生的契机。
2024年,这一年程序员很难,尤其是35岁以上的。如果对2024年做个总结,我想说三个关键词:“裁员、转行、机遇”。
第一个关键词:裁员
最深的伤痕,往往孕育着最强的重生。
2022、2023、2024年有一个热词叫做"裁员",这个词与"35岁程序员"并列成为网络上非常有流量的关键词。2024年,以35岁程序员为蓝本,由徐峥出演的电影《逆行人生》中的主人公高志垒,是一位大厂程序员。他几乎每天都996,把自己熬出了糖尿病,每天一睁眼就要测血糖。他为公司鞠躬尽瘁,干到了中级管理层,手下管着十几号人,可就是这样看起来特别卖力的人,在某一天被HR叫到办公室,裁了。这就是我在22年、23年、24年上半年一直在经历的场景。所以看这部电影的时候,我一个大老爷们自己在电影院里哭得稀里哗啦。
但其实不只是程序员,35岁可能是中国人的一道坎。
“
戴建业教授在一次采访里提到,在一个大互联网公司,35岁就是老员工了,很可能就被淘汰了。作为在大厂12年的互联网老人,我深感认同。其实你现在投简历,35岁的简历能通过HR初审的都已经很少很少了。
那怎么办呢?生活还是要继续。有什么解法吗?这两年我观察身边跟我一样遇到这类危机的程序员他们都去了这三个地方:
-
我那些还在这一行很优秀的伙伴,即便快40岁了也还做得很好,这类朋友大概占到10%,依旧高薪,从外部来看还是非常让人羡慕。
-
有80%的朋友选择了转行,做培训、做小生意、做自媒体、做保险、做电商、做新能源。虽然坎坷但慢慢地也在适应新的生活。挣的钱有高有低,平均下来比起干程序员的时候收入还是打了5、6折。
-
还有10%的人做起了自由职业者,做起了外包。
如果是你,你会怎么选?我的选择是转行。
第二个关键词:转行
改变,不是因为看到了希望才去努力,而是因为努力才看到了希望。
为什么会选择转行,做自由职业的外包不好吗?我告诉你不好。工作本身是一种价值交换,而真正能够挣钱,是因为你稀缺,而外包一点都不稀缺,这也就是为什么外包的价格其实不高,糊口还可以,但是想解决危机真的没戏。因为你持续在做的外包不会让你变得稀缺。裁员的人变多,大学生就业困难,并且他们都在自学编程,在没有正式工作前他们都会做外包挣外快,就这样外包的人会越来越多。
所以我要让自己变稀缺,但是哪里有稀缺?周期迭代的地方就一定会有稀缺。
“
六十年代汽车厂的流水线、八十年代的纺织工、二十一世纪的公司白领,一代人有一代人的下岗方式。一个行业有一个行业的兴衰,兴你就能跟着赚钱,衰你能力再强也跟着衰。
我做程序员的这12年完完整整地经历完了这个周期。跟着移动互联网成长起来,从年薪5万,到150万。如果说我的人生有辉煌,那这10年一定是我35岁之前最辉煌的十年。
后来我在2023年的时候做了非常难得的选择,换行并且我找到了一个小小的周期,叫做"视频号"的机会。回过头来看这个机会周期非常短暂,只有3年。我跟进了1年半。在这个周期里,自己尝试做自媒体,创业做了电商,进入了一家视频号头部商业IP的公司,从做教研到操盘手到项目负责人。
在这个过程中,我更深刻地理解了两个词,一个叫周期,一个叫稀缺。
先说什么叫做周期。周期是一种规律,它没那么复杂,就是周而复始的东西。比如:四季。
商业世界中大大小小的周期无处不在,我发现的视频号,你发现的抖音,他发现的AI。但它们都有一个规律叫做:“起初看起来不起眼,但未来影响会持续扩大的事物”。
简单一点来说它会分为三个阶段:
第一个阶段:概念 互联网的概念,自媒体的概念,新能源的概念,我们会发现任何新的东西都是先从概念开始的。而对概念的搬运就是很多人挣第一桶金的手段。直到今天依然非常有效。 比如:曾经的互联网+,有多少人只用PPT就可以融到百万,千万的天使投资。
第二个阶段:应用 当概念的泡沫破碎后,真正留下的东西,无论是团队还是企业都会开始关注这个新的事物,并且开始尝试使用到自己的业务中。正如今天大家都尝试AI如何应用到自己的业务中。如何将视频号应用到自己的营销体系中。
“
而这个时候,就是我们的新机会。因为在新旧周期交替的过程中,新周期里面一定需要新技能,而新技能是稀缺的。
第三个阶段:规模 当越来越多的人切入到这个领域之后,会加速这技术的成熟,平台就会更加完善,大公司、资本会投入得更多,规模化的应用就诞生了。而如果你在这个点位选择切入,那就不用选了,个人没有任何机会。
第三个关键词:机遇
当你以为错过了一个时代,其实你正站在下一个时代的起点。
今天我们在AI的周期里,AI的概念已经基本过去。今天但凡遇到一个人来给你讲AI的概念,你肯定都不信了,你更关心的是到底能不能解决你的一个实际问题,如果能解决,哪怕花点钱都是没问题的。
大家有没有发现,AI正在进入到应用的阶段。随着Agent模式的推出,国内如字节Coze、百度AppBuilder、智谱智能体,这样的智能体平台发展得非常迅速。字节的Coze目前已经有接近100万的AI应用制作者和200万个AI应用。这让我看到了曾经互联网时代的各大应用商店、移动端应用频出的时代。不同的是,那个时候只有程序员可以做,现在普通人也可以做。
2025年,一定是AI应用的元年,智能体会像曾经的移动app一样,有过之而无不及。但这一次,绝对是35岁以上程序员的大红利,大机会。为什么?因为智能体应用有两个核心的元素:
-
工作流:工作流的本质是对这个行业的结构化,能结构化出来一个行业的工作流的人,一定是深入参与行业的人并且掌握了大体行业全貌的人,而这类人一定不年轻。35岁以上在每一个行业从事了10几年的老人,对这些框架体系非常熟悉,在AI时代来临的时候,你们才是行业里最稀缺的人。
-
大模型:大模型未来在行业上更多的是微调和提示词工程。而这些能力对于程序员来说并没有那么难。
今天互联网已经成为基建,AI将是下一个基建。所以在2025年,36岁的我在互联网的时候,深入过SaaS服务的行业,深入过纯互联网平台,深入过教育行业,深入过本地生活行业,现在又在深入内容营销的行业。这些经验,将是我在AI时代最宝贵的财富。
了解大模型
我们先来分析一下大模型这个领域。
实际上,大模型开发也分为两类,一类是算法工程师,另一个类是应用工程师。 算法工程师就是研究大模型算法,应用工程师是基于大模型做一些上层应用的开发。当然,后面这类也需要对大模型有或多或少的了解,毕竟,你做普通业务开发还得了解MySQL、Kafka、Redis等底层实现一样。
对**于第一类算法工程师,**要求就高了,不是说你想转行去做,就能做得了的。竞争门槛极其高,起码得是个985/211硕士毕业吧,知名期刊发表过相关论文,有扎实的机器学习、人工智能的理论功底。
如果还要考虑要不要转行去做的,建议你早点放弃吧。因为真的适合去做的,根本就不需要犹豫。
对于第二类应用工程师, 要求相对就低很多了。
像刚刚提到的大模型算法,算是有技术壁垒,而大模型应用就算是有业务壁垒的方向,他跟电商、物流、财务以及其他大型2B系统一样,业务较复杂。对于毕业五年以上的人,如果想要进入这些业务行业,就要比深耕这些行业多年的候选人,更没有优势,毕竟HR在筛选候选人的时候,还是倾向于选择业务匹配的候选人,特别是一些中高端的职位。
如果你现在的方向没有技术壁垒,也没有业务壁垒,那么,有业务壁垒的大模型方向,算是一个不错的选择。但是,不要总是看着别人碗里的饭香,别人的老婆更好,因为这种情况太常见了。今天的热门,也有可能会两三年后的天坑,就像当年的IOS、Android开发一样,没有那么多需求了。谁知道呢?
岗位和工作内容
大模型相关的岗位通常涉及数据处理、模型训练与调优、系统部署等多个环节。具体工作内容可能包括:
- 数据预处理:清洗、标注、转换等,确保输入数据的质量。
- 模型设计与实现:根据任务需求选择或设计合适的网络结构,并完成编码实现。
- 训练与优化:通过调整超参数、使用正则化技术等方式提高模型性能。
- 测试与评估:对训练好的模型进行测试,分析结果并作出相应的改进。
- 部署上线:将最终确定的模型集成到产品中,确保其稳定高效地运行。
尝试自学大模型
自学大模型是一个持续学习的过程,建议从基础开始逐步深入。可以从学习线性代数、概率论等数学基础知识做起,然后逐渐过渡到机器学习、深度学习等高级主题。利用开源工具如TensorFlow、PyTorch等实践操作,结合具体的案例来加深理解和记忆。同时,积极参加线上线下的技术交流活动,与其他从业者分享经验,共同进步。
程序员转行至大模型领域需要学习一系列新的技能和知识。以下是一个详细的转行攻略,帮助您从程序员转向大模型领域:
1、了解基础知识:
数学基础:学习线性代数、概率论、统计学和微积分等基本数学知识,这些是大模型领域的基础。
编程语言:学习Python,因为它是最受欢迎的机器学习和数据科学编程语言。
2、学习机器学习理论:
机器学习基础:了解机器学习的基本概念,包括监督学习、非监督学习、强化学习等。
深度学习:深入学习神经网络的基本结构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。
3、掌握数据处理技能:
数据清洗和预处理:学习如何处理和清洗数据,以便为大模型准备高质量的输入数据。
数据分析和可视化:学习使用工具(如Pandas、NumPy、Matplotlib)进行数据分析和可视化。
4、实践项目经验:
在线课程和项目:参加在线课程,如Coursera、edX、Udacity上的机器学习和深度学习课程,并完成相关项目。
开源贡献:参与开源项目,为现有的机器学习模型或工具贡献代码。
5、学习框架和工具:
TensorFlow和PyTorch:学习这两个最流行的深度学习框架之一,通过实践来掌握它们的使用。
模型部署:了解如何将模型部署到生产环境,学习使用Flask或Django等Web框架。
7、专业领域深入:
自然语言处理(NLP):如果对处理文本数据感兴趣,深入学习NLP,了解词嵌入、序列模型、Transformer模型等。
计算机视觉:如果对图像和视频处理感兴趣,学习计算机视觉的基础知识,如图像识别、目标检测等。
8、建立个人项目:
创建个人作品集:开发一些个人项目,如构建一个简单的推荐系统、情感分析工具或图像识别应用,并将它们添加到您的GitHub仓库中。
9、参与社区和会议:
加入AI社区:参与线上论坛、社交媒体群组和本地Meetup,与其他机器学习爱好者交流。
参加会议和研讨会:参加机器学习和AI相关的会议和研讨会,以了解最新的研究和发展趋势
。
10、考虑进修教育:
研究生学位:如果您希望更深入地学习,可以考虑攻读计算机科学或数据科学的研究生学位。
专业证书:获得相关的专业证书,如谷歌的机器学习工程师证书。
11、职业规划:
职业转型:在您的简历中强调新的技能和项目经验,开始申请与大模型相关的工作或实习机会。
持续学习:大模型和AI领域不断进步,持续学习新技术和算法对于保持竞争力至关重要。
通过以上步骤,您可以从程序员成功转型为大模型领域的专业人士。记住,这个过程需要时间和努力,但随着您的技能和知识的增长,您将能够在这个新兴且充满机遇的领域中取得成功。
别再犹豫转不转行,只看理论不行动了!
在大模型时代,我们如何有效的去学习大模型?
现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型各大场景实战案例
结语
【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈