分治算法 (leetcode 241 python)

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

给定一个含有数字和运算符的字符串,为表达式添加括号,改变其运算优先级以求出不同的结果。你需要给出所有可能的组合的结果。有效的运算符号包含 +- 以及 * 。

示例 1:

输入: "2-1-1"
输出: [0, 2]
解释: 
((2-1)-1) = 0 
(2-(1-1)) = 2

示例 2:

输入: "2*3-4*5"
输出: [-34, -14, -10, -10, 10]
解释: 
(2*(3-(4*5))) = -34 
((2*3)-(4*5)) = -14 
((2*(3-4))*5) = -10 
(2*((3-4)*5)) = -10 
(((2*3)-4)*5) = 10

class Solution(object):
    def diffWaysToCompute(self, input):
        """
        :type input: str
        :rtype: List[int]
        """
        def dfs(s, cache) :
            ops = {'+':lambda x,y:x+y, '-':lambda x,y:x-y, '*':lambda x,y:x*y}
            if not cache.has_key(s) :
                ret = []
                for k, v in enumerate(s) :
                    if v in '+-*' :
                        for left in dfs(s[:k], cache) :
                            for right in dfs(s[k+1:], cache) :
                                ret.append(ops[v](left,right))
                if not ret :
                    ret.append(int(s))
                cache[s] = ret
            return cache[s]
        return dfs(input, {})

分治算法解决的经典问题:

       (1)二分搜索
  (2)大整数乘法
  (3)Strassen矩阵乘法
  (4)棋盘覆盖
  (5)合并排序
  (6)快速排序
  (7)线性时间选择
  (8)最接近点对问题
  (9)循环赛日程表
         (10) 汉诺塔问题

转载于:https://www.cnblogs.com/qkqBeer/articles/10117908.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值