四平方数和定理(leetcode 279 python)

四平方数定理:(theorem on the sum of foursquares)亦称拉格朗日四平方数和定理。四平方数和问题是著名的数论问题.由拉格朗日(La-grange, J.-L.)最终解决,从而有上面的定理名字.该定理断言:每个正整数均可表为四个整数的平方和(其中有些整数可以为零)。

推论:满足四数平方和定理的数n(四个整数的情况),必定满足 n=(4^ a) * (8b+7)

class Solution:
    def numSquares(self, n):
        """
        :type n: int
        :rtype: int
        """
        while n % 4 == 0:
            n /= 4
        
        if n % 8 == 7: 
            return 4
        a = 0
        while a**2 <= n:
            b = int((n - a**2)**0.5)
            if a**2 + b**2 == n:
                return (not not a) + (not not b)
            a += 1
        return 3

 深度优先遍历(层级遍历)

class Solution:
    def numSquares(self, n):
        """
        :type n: int
        :rtype: int
        """
        q = list()
        q.append([n, 0])
        visited = [False for _ in range(n+1)]
        visited[n] = True

        while any(q):
            num, step = q.pop(0)

            i = 1
            tNum = num - i**2
            while tNum >= 0:
                if tNum == 0:
                    return step + 1

                if not visited[tNum]:
                    q.append((tNum, step + 1))
                    visited[tNum] = True

                i += 1
                tNum = num - i**2

 

转载于:https://www.cnblogs.com/qkqBeer/articles/10135658.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值