洛谷P3965 [TJOI2013]循环格
思路:
非常好的一题网络流,一开始根本想不到。
可以发现,循环格满足入度=出度=
1
1
1。简单证明就是,一个
n
×
m
n\times m
n×m的矩阵,每个格点都有一条出边,出度为
1
1
1,如果入度=
0
0
0,那么就无法到达,所以形成不了循环格;如果入度
>
1
>1
>1,那么就会存在其他点的入度为
0
0
0。
那么我们就可以将一点
(
i
,
j
)
(i,j)
(i,j)拆成
(
i
,
j
)
(i,j)
(i,j)和
(
i
,
j
)
′
(i,j)^{'}
(i,j)′。
建图:
1、
S
S
S向
(
i
,
j
)
(i,j)
(i,j)建流量为
1
1
1费用为
0
0
0的边。
2、
(
i
,
j
)
′
(i,j)^{'}
(i,j)′向
T
T
T建流量为
1
1
1费用为
0
0
0的边。
3、每个点的入点向原始方向的出点建流量为
1
1
1费用为
0
0
0的边,对其他方向的出点建流量为
1
1
1费用为
1
1
1的边。
跑最小费用最大流就可以得到答案了,也是二分图带权匹配。
代码:
#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define loop(x,y,z) for(x=y;x<=z;x++)
#define reve(x,y,z) for(x=y;x>=z;x--)
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e4+10;
const int M=1e6+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
struct edge
{
int u,v,f,w;
}e[M];
int head[N],len=1,dis[N],vis[N];
int maxflow,mincost;
int pre[N],path[N];
void add(int u,int v,int f,int w)
{
e[++len]={head[u],v,f,w};
head[u]=len;
}
void inc(int u,int v,int f,int w)
{
add(u,v,f,w);
add(v,u,0,-w);
}
int spfa(int s,int t)
{
cl(dis,inf);
cl(vis,0);
cl(pre,-1);
dis[s]=0;
vis[s]=1;
queue<int>q;
q.push(s);
while(!q.empty())
{
int u=q.front(),i;
q.pop();
vis[u]=0;
for(i=head[u];i;i=e[i].u)
{
int v=e[i].v,w=e[i].w;
if(e[i].f && dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
pre[v]=u;
path[v]=i;
if(!vis[v])
{
q.push(v);
vis[v]=1;
}
}
}
}
return pre[t]!=-1;
}
void ek(int s,int t)
{
while(spfa(s,t))
{
int mi=inf,i;
for(i=t;i!=s;i=pre[i])
mi=min(mi,e[path[i]].f);
for(i=t;i!=s;i=pre[i])
{
e[path[i]].f-=mi;
e[path[i]^1].f+=mi;
}
maxflow+=mi;
mincost+=dis[t]*mi;
}
}
int d[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
char a[110][110];
#define id(x,y) (x-1)*m+y
#define ot(x,y) id(x,y)+n*m
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
int n,m,i,j,k;
cin>>n>>m;
map<char,int> ma;
ma['D']=0;ma['U']=1;ma['R']=2;ma['L']=3;
for(i=1;i<=n;i++)
cin>>a[i]+1;
int s=0,t=2*n*m+1;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
inc(s,id(i,j),1,0);
inc(ot(i,j),t,1,0);
for(k=0;k<4;k++)
{
int px=(i+d[k][0]+n-1)%n+1,py=(j+d[k][1]+m-1)%m+1;
if(k==ma[a[i][j]])
inc(id(i,j),ot(px,py),1,0);
else
inc(id(i,j),ot(px,py),1,1);
}
}
ek(s,t);
cout<<mincost<<endl;
return 0;
}