(费用流)洛谷P3965 [TJOI2013]循环格

洛谷P3965 [TJOI2013]循环格

思路:

非常好的一题网络流,一开始根本想不到。
可以发现,循环格满足入度=出度= 1 1 1。简单证明就是,一个 n × m n\times m n×m的矩阵,每个格点都有一条出边,出度为 1 1 1,如果入度= 0 0 0,那么就无法到达,所以形成不了循环格;如果入度 > 1 >1 >1,那么就会存在其他点的入度为 0 0 0
那么我们就可以将一点 ( i , j ) (i,j) (i,j)拆成 ( i , j ) (i,j) (i,j) ( i , j ) ′ (i,j)^{'} (i,j)
建图:
1、 S S S ( i , j ) (i,j) (i,j)建流量为 1 1 1费用为 0 0 0的边。
2、 ( i , j ) ′ (i,j)^{'} (i,j) T T T建流量为 1 1 1费用为 0 0 0的边。
3、每个点的入点向原始方向的出点建流量为 1 1 1费用为 0 0 0的边,对其他方向的出点建流量为 1 1 1费用为 1 1 1的边。
跑最小费用最大流就可以得到答案了,也是二分图带权匹配。

代码:

#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define loop(x,y,z) for(x=y;x<=z;x++)
#define reve(x,y,z)	for(x=y;x>=z;x--)
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e4+10;
const int M=1e6+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
struct edge
{
	int u,v,f,w;
}e[M];
int head[N],len=1,dis[N],vis[N];
int maxflow,mincost;
int pre[N],path[N];
void add(int u,int v,int f,int w)
{
	e[++len]={head[u],v,f,w};
	head[u]=len;
}
void inc(int u,int v,int f,int w)
{
	add(u,v,f,w);
	add(v,u,0,-w);
} 
int spfa(int s,int t)
{
	cl(dis,inf);
	cl(vis,0);
	cl(pre,-1);
	dis[s]=0;
	vis[s]=1;
	queue<int>q;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front(),i;
		q.pop();
		vis[u]=0;
		for(i=head[u];i;i=e[i].u)
		{
			int v=e[i].v,w=e[i].w;
			if(e[i].f && dis[v]>dis[u]+w)
			{
				dis[v]=dis[u]+w;
				pre[v]=u;
				path[v]=i;
				if(!vis[v])
				{
					q.push(v);
					vis[v]=1;
				}
			}
		}
	}
	return pre[t]!=-1;
}
void ek(int s,int t)
{
	while(spfa(s,t))
	{
		int mi=inf,i;
		for(i=t;i!=s;i=pre[i])
			mi=min(mi,e[path[i]].f);
		for(i=t;i!=s;i=pre[i])
		{
			e[path[i]].f-=mi;
			e[path[i]^1].f+=mi;
		}
		maxflow+=mi;
		mincost+=dis[t]*mi;
	}
}
int d[4][2]={{1,0},{-1,0},{0,1},{0,-1}}; 
char a[110][110];
#define id(x,y) (x-1)*m+y
#define ot(x,y) id(x,y)+n*m
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	int n,m,i,j,k;
	cin>>n>>m;
	map<char,int> ma;
	ma['D']=0;ma['U']=1;ma['R']=2;ma['L']=3;
	for(i=1;i<=n;i++)
		cin>>a[i]+1;
	int s=0,t=2*n*m+1;
	for(i=1;i<=n;i++)
		for(j=1;j<=m;j++)
		{
			inc(s,id(i,j),1,0);
			inc(ot(i,j),t,1,0);
			for(k=0;k<4;k++)
			{
				int px=(i+d[k][0]+n-1)%n+1,py=(j+d[k][1]+m-1)%m+1;
				if(k==ma[a[i][j]])
					inc(id(i,j),ot(px,py),1,0);
				else
					inc(id(i,j),ot(px,py),1,1);
			}
		}
	ek(s,t);
	cout<<mincost<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值