(Prufer序列)洛谷P4430小猴打架

洛谷P4430小猴打架

思路:

n n n个结点,通过不同的连接方式生成的树有多少种。
通过Prufer序列, n n n个结点不同的生成树有 n n − 2 n^{n-2} nn2种。又因为这 n − 1 n-1 n1条边可以以任意顺序连上,所以乘上这 n − 1 n-1 n1条边全排列的数量,即 ( n − 1 ) ! n n − 2 (n-1)!n^{n-2} (n1)!nn2种。

代码:

#include<bits/stdc++.h>
#define pii pair<int,int>
#define int long long
#define cl(x,y) memset(x,y,sizeof(x))
#define loop(x,y,z) for(x=y;x<=z;x++)
#define reve(x,y,z)	for(x=y;x>=z;x--)
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e6+10;
const int mod=9999991;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
int qpow(int a,int b)
{
	a%=mod;
	int ans=1;
	while(b)
	{
		if(b&1)
			ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	int n,i;
	cin>>n;
	if(n==1)
	{
		cout<<0<<endl;
		return 0;
	}
	int ans=qpow(n,n-2)%mod;
	for(i=1;i<n;i++)
		ans=ans*i%mod;
	cout<<ans<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值