牛客多校day4-B.Sample Game

Sample Game

题意:

1 ∼ n 1\sim n 1n个数,每个数都有一个随机概率 p i p_i pi,进行如下操作:

  1. 按照概率随机生成一个数。
  2. 如果生成的数字不小于之前生成的任意一个数字,回到步骤 1 1 1,否则到步骤 3 3 3
  3. 如果生成数字的个数为 n n n,那么贡献为 n 2 n^2 n2

求期望贡献。

思路:

生成的序列肯定是一个非降的形式。我们假设最后数列的长度为 l e n len len,那么可以得到长度大于 i i i的概率 P ( l e n > i ) = ∏ i = 1 n p i t i P(len>i)=\prod\limits_{i=1}^{n}p_i^{t_i} P(len>i)=i=1npiti,其中 t i t_i ti表示数字 i i i出现的次数。因为在长度为 i i i的时候,我们并不知道对于 i + 1 i+1 i+1的时候,取的数是会停下来还是会继续取,但是最终的长度一定会比 i i i大,所以这里算的是 l e n > i len>i len>i的概率。

那么我们可以得到 P ( l e n = i ) = P ( l e n > i − 1 ) − P ( l e n > i ) P(len=i)=P(len>i-1)-P(len>i) P(len=i)=P(len>i1)P(len>i)

所以我们贡献的期望就是:
E ( X ) = ∑ i = 1 ∞ i 2 P ( l e n = i ) = ∑ i = 1 ∞ i 2 ( P ( l e n > i − 1 ) − P ( l e n > i ) ) = 1 2 P ( l e n > 0 ) + ∑ i = 1 ∞ ( ( i + 1 ) 2 − i 2 ) P ( l e n > i ) = ∑ i = 0 ∞ ( 2 i + 1 ) P ( l e n > i ) \begin{aligned}E(X)&=\sum\limits_{i=1}^{\infty}i^2P(len=i)\\&=\sum\limits_{i=1}^{\infty}i^2(P(len>i-1)-P(len>i))\\&=1^2P(len>0)+\sum\limits_{i=1}^{\infty}((i+1)^2-i^2)P(len>i)\\&=\sum\limits_{i=0}^{\infty}(2i+1)P(len>i)\end{aligned} E(X)=i=1i2P(len=i)=i=1i2(P(len>i1)P(len>i))=12P(len>0)+i=1((i+1)2i2)P(len>i)=i=0(2i+1)P(len>i)

对于 P ( l e n > i ) , i ∈ [ 0 , + ∞ ) P(len>i),i\in[0,+\infty) P(len>i),i[0,+),我们可以将这个数列写成生成函数的形式 f ( x ) = ∑ i = 0 ∞ P ( l e n > i ) x i f(x)=\sum\limits_{i=0}^{\infty}P(len>i)x^i f(x)=i=0P(len>i)xi

可得 f ′ ( x ) = ∑ i = 0 ∞ i P ( l e n > i ) x i − 1 f^{'}(x)=\sum\limits_{i=0}^{\infty}iP(len>i)x^{i-1} f(x)=i=0iP(len>i)xi1,
所以 E ( x ) = 2 f ′ ( 1 ) − f ( 1 ) E(x)=2f^{'}(1)-f(1) E(x)=2f(1)f(1)

对于第 i i i个数出现 j j j次的概率,我们也可以写成一个生成函数 g i ( x ) = ∑ j = 0 ∞ p i j x j g_i(x)=\sum\limits_{j=0}^{\infty}p_i^jx^j gi(x)=j=0pijxj

根据生成函数中相乘的组合意义,我们又可以得到 f ( x ) = ∏ i = 1 n g i ( x ) f(x)=\prod\limits_{i=1}^{n}g_i(x) f(x)=i=1ngi(x)

其中 g i ( x ) g_i(x) gi(x)可以化简成 1 1 − p i x \cfrac{1}{1-p_ix} 1pix1的形式。
推导过程就是:
∵ g i ( x ) = ∑ j = 0 ∞ p i j x j \because g_i(x)=\sum\limits_{j=0}^{\infty}p_i^jx^j gi(x)=j=0pijxj
∴ p i x g i ( x ) = ∑ j = 1 ∞ p i j x j \therefore p_ixg_i(x)=\sum\limits_{j=1}^{\infty}p_i^jx^j pixgi(x)=j=1pijxj
∴ ( 1 − p i x ) g i ( x ) = 1 \therefore (1-p_ix)g_i(x)=1 (1pix)gi(x)=1
∴ g i ( x ) = 1 1 − p i x \therefore g_i(x)=\cfrac{1}{1-p_ix} gi(x)=1pix1

所以可以得到:
f ′ ( x ) = ∑ i = 1 n ( g i ′ ( x ) ∏ j = 1 , j ≠ i n g j ( x ) ) = ∑ i = 1 n ( p i ( 1 − p i ) 2 ∏ j = 1 , j ≠ i n g j ( x ) ) = ∑ i = 1 n ( g i ( x ) p i 1 − p i ∏ j = 1 , j ≠ i n g j ( x ) ) = ∑ i = 1 n ( p i 1 − p i ∏ j = 1 n g j ( x ) ) = f ( x ) ∑ i = 1 n p i 1 − p i \begin{aligned}f^{'}(x)&=\sum\limits_{i=1}^{n}(g_i^{'}(x)\prod\limits_{j=1,j\neq i}^{n}g_j(x))\\&=\sum\limits_{i=1}^{n}(\cfrac{p_i}{(1-p_i)^2}\prod\limits_{j=1,j\neq i}^{n}g_j(x))\\&=\sum\limits_{i=1}^{n}(g_i(x)\cfrac{p_i}{1-p_i}\prod\limits_{j=1,j\neq i}^{n}g_j(x))\\&=\sum\limits_{i=1}^{n}(\cfrac{p_i}{1-p_i}\prod\limits_{j=1}^{n}g_j(x))\\&=f(x)\sum\limits_{i=1}^{n}\cfrac{p_i}{1-p_i}\end{aligned} f(x)=i=1n(gi(x)j=1,j=ingj(x))=i=1n((1pi)2pij=1,j=ingj(x))=i=1n(gi(x)1pipij=1,j=ingj(x))=i=1n(1pipij=1ngj(x))=f(x)i=1n1pipi

所以最后可以得到: f ( 1 ) = ∏ i = 1 n 1 1 − p i , f ′ ( 1 ) = f ( 1 ) ∑ i = 1 n p i 1 − p i f(1)=\prod\limits_{i=1}^{n}\cfrac{1}{1-p_i},f^{'}(1)=f(1)\sum\limits_{i=1}^{n}\cfrac{p_i}{1-p_i} f(1)=i=1n1pi1,f(1)=f(1)i=1n1pipi

代码:

#include<bits/stdc++.h>
#define fi first
#define se second
#define int long long
#define mp make_pair
#define pb push_back
#define ls x<<1
#define rs x<<1|1
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define cl(x,y) memset(x,y,sizeof(x))
#define nxtp(a,n) next_permutation(a+1,a+n+1)
#define mem(x,y,n) memset(x,y,sizeof(int)*(n+5))
const int N=1e6+10;
const int mod=998244353;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
const double INF=1e18;
using namespace std;
int p[N];
int qpow(int a,int b)
{
	int ans=1;
	while(b)
	{
		if(b&1)
			ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);
	int n,i,sum=0;
	cin>>n;
	for(i=1;i<=n;i++)
	{
		cin>>p[i];
		sum+=p[i];
	}
	sum=qpow(sum,mod-2);
	for(i=1;i<=n;i++)
		p[i]=p[i]*sum%mod;
	int f1=1,f2=0;
	for(i=1;i<=n;i++)
		f1=(f1*(1*qpow((1-p[i]+mod)%mod,mod-2)))%mod;
	for(i=1;i<=n;i++)
		f2=(f2+(p[i]*qpow((1-p[i]+mod)%mod,mod-2)))%mod;
	f2=2*f2*f1%mod;
	cout<<(f1+f2)%mod<<endl;
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值