在深度学习领域模型的压缩与部署是一项非常重要的研究课题,原因就在于模型巨大的成本和算力需求;因此,怎么把模型小型化就成为一个亟待解决的问题。
因此,一项技术就被应用于模型小型化的过程,这个技术就叫做知识蒸馏,而我们平常说的比较多的是大模型蒸馏技术。
当然,知识蒸馏技术并不是一项新技术,其在2015年就已经被诺贝尔奖获得者——Hinton等人提出;之后在chatGPT带火大模型技术之后,知识蒸馏就又再次进入大众的视野。
但如果说知识蒸馏最爆火的原因就在于DeepSeek的发布,我们都知道DeepSeek是我国的模型之光;而其解决的最主要的问题就模型的训练成本问题;但可能很少有人知道,其实DeepSeek是使用知识蒸馏技术,从阿里的千问系列蒸馏得到的DeepSeek模型。
所以,什么是蒸馏技术,以及蒸馏技术的发展历史与实现原理是什么?
蒸馏技术
蒸馏技术是由诺奖得主——Hinton在2015年提出的,但严格来说Hinton只是在前人的基础之上优化了蒸馏技术。
蒸馏技术——现在对蒸馏技术的定义是教师模型(大模型)通过训练数据学到的“知识”(如类别间关系、特征分布)被提炼到学生模型(小模型)中。
简单理解蒸馏技术就是老师教学生,在蒸馏技术之前,训练模型需要从0开始;也就是需要随机初始化模型参数;这就类似于你从小开始学习全部靠自学,没有任何人教你。
很明显,这种方式学习效率低下;因此,就产生了一个新的职业——教师;它们的作用就是在他们自己学习的基础之上,把知识和经验教给你,这样不论是学习的速度还是效率,还是准确率都会大大提高。
而模型蒸馏就是基于这个理论,用训练好的大模型去“教”简单的小模型;由于是站在巨人的肩膀上,因此蒸馏出来的小模型不论是表现还是响应速度都比大模型要好。
当然,蒸馏技术作为目前一项热门技术,其实现原理并没有大家想象中的那么简单;首先,在2015 Hinton提出知识蒸馏之前,模型蒸馏已经有人在使用了;只不过那时候的蒸馏技术还比较简单,只是在输出层对模型的预测结果进行学习;这种方式被称为硬目标。
这就像上学时有时老师说的那样,你实在不会记住就行了,不需要知道为什么;但这就会产生一个问题,那就是你只能学会同一个题目或者是很类似的题目,但换个新题目你可能就不会了。
所以,老师常说我们不但要学会知识,更重要的是要学会学习的方法——因此Hinton提出的知识蒸馏就类似于学习方法,它学习的是大模型预测数据的概率分布或思考过程,而不仅仅只是记住答案;而这种方式就被叫做软目标。
以目前的蒸馏技术来看,蒸馏也分为多种不同的情况;比如输出层蒸馏,中间层蒸馏和自蒸馏等多种不同的形式;但不论什么形式的蒸馏,其目的只有一个,那就是让student模型去学习Teacher老师模型的“知识”。
实现原理
知识蒸馏的实现原理主要包括两个方面,知识迁移和软标签:
知识迁移:教师模型(大模型)通过训练数据学到的“知识”(如类别间关系、特征分布)被提炼到学生模型(小模型)中。
软标签(Soft Labels):教师模型输出的概率分布(非硬标签)包含更多信息,例如“猫和狗有相似特征”,学生模型通过模仿这些软标签学习泛化能力。
模型蒸馏使用温度T来控制软标签的相关性,温度越高,软标签的相关度越高,温度越低软标签相关度越低。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。