keras.Sequential.compile(loss='目标函数 ', optimizer='adam', metrics=['accuracy'])

本文详细介绍了Keras模型编译时常用的目标函数,包括mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, mean_squared_logarithmic_error, squared_hinge, hinge, binary_crossentropy和categorical_crossentropy等,解析了各个损失函数的公式和应用场景。" 117854538,8416111,Spring注解实现依赖注入DI详解,"['Spring框架', 'Java', 'DI', 'IOC']
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值