51nod3143 整装待发!

3143 整装待发!

n位战士即将奔赴战场,他们每个人都有一个攻击值a_{i}和一个防御值b_{i},现在你想设计一种装备给这n位战士,如果这件装备的攻击值为A,防御值为B,那么对于第ii位战士这件装备的不匹配度s_{i}max(|A-ai|,|B-bi|),总的不匹配度之和为
S=\sum_{i=1}^{n}=\sum_{i=1}^{n}max(|A-ai|,|B-bi|)

输入

第一行一个整数n表示战士的数量
接下来n行,每行两个整数x[i],y[i]表示这个战士的攻击值和防御力

输出

一个整数表示最小的不匹配度之和

数据范围

20% 2 <= n <= 5
50% 2 <= n <= 1000
100% 2 <= n <= 100000

输入样例

输入样例1:
3
1 2
2 1
3 3
输入样例2:
4
0 0
0 2
2 0
2 2
输入样例3:
4
0 0
1 0
0 1
1 1

输出样例

输出样例1:
3
输出样例2:
4
输出样例3:
3

解析:

就是二维平面上一堆点 , 一个点使得所有点到这个点的切比雪夫距离最小。
转化一下转成曼哈顿坐标就直接去中位数就行 , 注意坐标要是整点 , 要是不是整点的话想四个方向移动一下看哪个最小。

放代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1e9+7;
const int N=1e5+10;
double a[N],b[N],c[N],d[N];
int k[N],q[N];
int main()
{
    int n;
    cin>>n;
    for(int i=0; i<n; i++)
    {
        double x,y;
        scanf("%lf%lf",&x,&y);
        k[i]=x;
        q[i]=y;
        a[i]=(x+y)/2;//排序求中位数的曼哈顿距离
        c[i]=(x+y)/2;
        b[i]=(x-y)/2;//排序求中位数的曼哈顿距离
        d[i]=(x-y)/2;
    }
    sort(a,a+n);
    sort(b,b+n);
    double  x,y;
    ll sum=0;
    if(n%2==1)//求中位数
    {
        x=a[n/2];
        y=b[n/2];
    }
    else
    {
        x=(a[n/2]+a[n/2-1])/2;
        y=(b[n/2]+b[n/2-1])/2;
    }
    if((x+y)==(int)(x+y)&&(x-y)==(int)(x-y))//恰好中位数是整数
    {
        for(int i=0; i<n; i++)
        {
            sum+=abs(c[i]-(int)x)+abs(d[i]-(int)y);
        }
        cout<<sum<<endl;
    }
    else
    {
        int A=(x+y);
        int B=(x-y);
        ll ans1=0,ans2=0,ans3=0,ans4=0;//不是整数的四种情况
        for(int i=0; i<n; i++)
        {
            ans1+=max(abs(k[i]-(int)A),abs(q[i]-(int)B));
        }
        for(int i=0; i<n; i++)
        {
            ans2+=max(abs(k[i]-(int)A-1),abs(q[i]-(int)B));
        }
        for(int i=0; i<n; i++)
        {
            ans3+=max(abs(k[i]-(int)A-1),abs(q[i]-(int)B-1));
        }
        for(int i=0; i<n; i++)
        {
            ans4+=max(abs(k[i]-(int)A),abs(q[i]-(int)B-1));
        }
        sum=min(min(min(ans1,ans2),ans3),ans4);
        cout<<sum<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值