ZCMU-1313-砝码称重

1313: The Balance

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 32   Solved: 14
[ Submit][ Status][ Web Board]

Description

Now you are asked to measure a dose of medicine with a balance and a number of weights. Certainly it is not always achievable. So you should find out the qualities which cannot be measured from the range [1,S]. S is the total quality of all the weights.

Input

The input consists of multiple test cases, and each case begins with a single positive integer N (1<=N<=100) on a line by itself indicating the number of weights you have. Followed by N integers Ai (1<=i<=N), indicating the quality of each weight where 1<=Ai<=100.

Output

For each input set, you should first print a line specifying the number of qualities which cannot be measured. Then print another line which consists all the irrealizable qualities if the number is not zero.

Sample Input

3
1 2 4
3
9 2 1

Sample Output

0
2
4 5

HINT

For the second case,1=1,2=2,3=1+2,6=9-2-1,7=9-2,8=9-1,9=9,10=9+1,11=9+2,12=9+1+2,but,4,5 can not reach.


【解析】

这道题的意思就是给你n个砝码和n个砝码的重量。问你在这些砝码的总和当中那个质量是称不出来的。在这里我们又用到了母函数...模板是一样的就是拿来把它套出来。注意的是这里可以用砝码相减了。所以我们在代码中也要体现这一点,之前有个给你砝码的数量和质量让你求能称出什么来的。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<string>
using namespace std;
int a[101],b[101];
int f1[11000],f2[11000];
int main()
{
    int n,i,sum,m,j,k;
    while(~scanf("%d",&n))
    {
        int cnt=0,sum1=0;
        memset(f1,0,sizeof(f1));
        memset(f2,0,sizeof(f2));
        for(i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
            sum1+=a[i];//所以砝码质量的总和
        }
        f1[0]=f1[a[0]]=1;//此处f1[0]一定要注意为1,因为它本身的砝码肯定是能称出来的
        sum=a[0];//当前砝码的质量总和
        for(i=1;i<n;i++)
        {
            for(j=0;j<=sum;j++)//从0开始到当前加上的砝码的质量
            {
                for(k=0;k+j<=sum1&&k<=a[i];k+=a[i])//k+j最大肯定不可能比所有砝码质量加起来那么大。
                {
                    m=abs(j-k);//由于砝码的质量也可以通过相减称出来,比如6可以是9克的砝码减去2克的和1克的
                    f2[j+k]+=f1[j];//模拟多项式相乘,下标表示指数相乘,
                    f2[m]+=f1[j];
                }
            }
            sum=sum+a[i];
            for(j=0;j<=sum;j++)
            {
                f1[j]=f2[j];//多项式的结果给了f1数组
                f2[j]=0;
            }
        }
        int p=0,flag=0;
        for(i=1;i<=sum;i++)
        {
            if(f1[i]==0)
            {
                cnt++;
                b[p++]=i;
                flag=1;
            }
        }
        printf("%d\n",cnt);
        if(flag)
        {
            printf("%d",b[0]);
            for(i=1;i<p;i++)
                printf(" %d",b[i]);
            printf("\n");
        }
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值