1689: 找质数
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 136 Solved: 16
[ Submit][ Status][ Web Board]
Description
质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2。
目前为止,人们未找到一个公式可求出所有质数。
这道题想要你找出从L到R的区间内的所有质数。为了简化输出,你只需输出给定区间内的所有质数的和。
Input
t测试的数据个数。t<=500
接下来每组测试数据,有两个自然数,L和R。2 <= L <= R <= 10^12-1, R-L <= 106
Output
对每组自然数的区间L,R。输出从L到R中所有质數的和。
Sample Input
3
2 10
3 7
1000000 2000000
Sample Output
17
15
105363426899
【解析】
这道题也是看了别人的代码和解析才弄出来的,原来也是筛法的一个变换,我们可以先把1到1000000的素数都算出来,然后再算如果每一个素数相加的都标记成1表示不是素数。我们要判断从哪一个数开始进行标记,如果l%prime[i]==0,那就从l开始标记不然就从(l/prime[i]+1)*prime[i]。为什么要这么做,其实就是几个相同素数组合起来数肯定不是素数因为除了1和它本身还有其他的因子。题目重有给出R-L<=10的6次方,我们标记的时候只用标记j-l就可以了这样只用标记1000000个数。具体看代码解析。
#include<iostream>
#include<algorithm>
#include <cstdio>
#include <cstring>
int len=0;
int prime[1000010];
int f[1000010];
long long l,r;
void facs()
{
memset(f,0,sizeof(f));
int i,j;
for (i=2;i<=1000000;i++)
{
if (!f[i])
{
prime[len++]=i;//把2-1000000素数都标记出来
for (j=i*2;j<=1000000;j+=i)
f[j]=1;
}
}
}
void facs1()
{
memset(f,0,sizeof(f));
long long i,j;
for (i=0;i<len;i++)
if (prime[i]>r)
break;
else
{
if(l%prime[i]==0)
{
j=l;
}
else
{
j=(long long)(l/prime[i]+1)*prime[i];
}
for (;j<=r;j+=prime[i])
{
if (j!=prime[i])//如果本身不是素数由素数相加起来的肯定不是素数
{
f[j-l]=1;//只用标记j-l,效果是一样的
}
}
}
}
int main()
{
int t,i;
long long sum;
scanf("%d",&t);
facs();
while (t--)
{
scanf("%lld%lld",&l,&r);
facs1();
sum=0;
for (i=0;i<=r-l;i++)
if (f[i]==0)//是素数
{
sum+=i+l;//这里要i+l表示加回去l
}
printf("%lld\n",sum);
}
return 0;
}