HDU3790Dijkstra

原题 http://acm.hdu.edu.cn/showproblem.php?pid=3790
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <malloc.h>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <set>
#include <string.h>
#include <string>
using namespace std;
#define INF 99999999
#define N 2000

struct node{
	int d;//代表距离
	int p;//代表花费
}map[N][N];//必须要二维
int vis[N];
int dis[N];
int mon[N];
int n,m;

void Dijkstra(int x){
	int i,j;
	memset(vis,0,sizeof(vis));
	for(i=1;i<=n;i++){
		dis[i] = map[x][i].d;
		mon[i] = map[x][i].p;
	}
	vis[x] = 1;
	int MIN1;
	int MIN2;
	int next;
	for(i=1;i<=n;i++){
		MIN1 = INF;
		MIN2 = INF;
		for(j=1;j<=n;j++){
			if(vis[j]==0 && ((dis[j]<MIN1) || (dis[j]==MIN1&&mon[j]<MIN2))){//判断的时候把花费也考虑进去
				MIN1 = dis[j];
				next = j;
				MIN2 = mon[j];
			}
		}
		vis[next] = 1;
		for(j=1;j<=n;j++){
			if(vis[j]==0 && ((dis[j]>dis[next]+map[next][j].d) || (dis[j]==dis[next]+map[next][j].d && mon[j]>mon[next]+map[next][j].p))){
				dis[j] = dis[next]+map[next][j].d;
				mon[j] = mon[next]+map[next][j].p;
			}
		}
	}
	
}

int main(){
	int i,j;
	int a,b,cc,dd;
	int dx,dy;
	
	while(~scanf("%d%d",&n,&m)){
		if(n==0 && m==0)
			break;
		memset(mon,0,sizeof(mon));
		memset(dis,0,sizeof(dis));
		for(i=1;i<=n;i++){
			for(j=1;j<=n;j++){
				map[i][j].d = INF;
				map[i][j].p = INF;
			}
		}
		for(i=1;i<=n;i++){
			map[i][i].d = 0;
			map[i][i].p = 0;
		}
		for(i=1;i<=m;i++){
			scanf("%d%d%d%d",&a,&b,&cc,&dd);
			if(cc <= map[a][b].d){
				if(cc==map[a][b].d){
					if(dd < map[a][b].p){
						map[a][b].p = dd;
						map[b][a].p = dd;
					}
				}
				else if(cc < map[a][b].d){
					map[a][b].d = cc;
					map[b][a].d = cc;
					map[a][b].p = dd;
					map[b][a].p = dd;
				}
				
			}
		}
		scanf("%d%d",&dx,&dy);
		Dijkstra(dx);
		printf("%d %d\n",dis[dy],mon[dy]);
	}
	
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值