五只猴子一起摘了一堆桃子,因为太累了,它们商量决定,先睡一觉再分.一会其中的一只猴子来了,它见别的猴子没来,便将这堆桃子平均分成5份 ,结果多了一个,就将多的这个吃了,并拿走其中的一份.一会儿,第2只猴子来了,他不知道已经有一个同伴来过,还以为自己是第一个到的呢,于是将地上的桃子堆起来,再一次平均分成5份,发现也多了一个,同样吃了这1个,并拿走其中一份.接着来的第3,第4,第5只猴子都是这样做的.......,根据上面的条件,问这5只猴子至少摘了多少个桃子?第5只猴子走后还剩下多少个桃子?
设第n只猴取走的桃数为a(n), n+1只为a(n+1)
得: 5*a(n+1)-1 = 4*a(n)由此可得一个递归数列
a(n) = (a(1)+1)*(4/5)^(n-1) -1
因为a(n)属于N; 所以设a(1)+1 = k*5^4(k属于N)
原有苹果数为
5*a(1)+1=k*5^5-4;
当k=1时,为3121
a(1) = 624;
a(5) = (624+1)*(4/5)^4 - 1 = 255
最后剩余苹果255*4 = 1020
需要考虑的原则就是:变相的4、5最小公倍数问题,即4的倍数减1可以为5的倍数,最小是16。
总共是:
5×5×5×5×5-4=3121个
校验:
第一只走后,剩(3121-1)/5*4=2496
第二只走后,剩(2496-1)/5*4=1996
第三只走后,剩(1996-1)/5*4=1596
第四只走后,剩(1596-1)/5*4=1276
第五只走后,剩(1276-1)/5*4=1020