1.FONC
SONC
SOSC
分别求一个二元三次函数的极值。
要严格应用条件,会发现三种方法最后需要手工验证的候选极值点是依次减少的(4,2,1)。
2.二次型函数两轮最速下降法
3.二次型函数求下一个共轭方向
4.两阶段单纯形法
给了一个标准型3x6的LP,加上人工变量3x9,直接硬算能把脑子算炸。最好用修正单纯形法,只需要维护最多3x5的矩阵。
5.对偶
用互补松弛条件求证一组x*值是给定线性不等式规划的最优解。
max cx
s.t. Ax≤b
x≥0
方法:假设x就是最优解。
首先把原问题化为标准型,根据x带入标准型求的标准型x*。
然后得到对偶问题。
min -cx
s.t Ax=b
x≥0
⇒
max ytb
s.t. ytA≤-c
然后根据对偶松弛条件
①(ct-ytA)x=0
求得y*
代入对偶优化目标
ytb中得到z(y*)=ytb
验证和z(x)=cx相等,根据强对偶定理,知x、y*分别为原问题和目标问题的最优解。假设成立。
得证。